
AO-A115 553 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO-ETC F/6 9/2
MODIFY: A MACHINE-INDEPENDENT MAINTENANCE PROGRAM.(U)
DEC 81 N J MURPHY

UNCLASSIFIED AFIT/GCS/MA/81O-5

Iimmhmhmhh
EEEEEEEEEEEEEE
EIEEEIhIhIIEEE
EEIIEEEEEEEEI
IIIIIIEIIEEIIE
m//I////IIIII/I

UNITED STATES AIR FORICE
All UNIVERSITY7

AIR FORCE INSTITUTE OF TECHNOtOY
Wrtght-Pettersom Air Forc* SoemOkle

i;4

APIT/GCS/MA/81D-5

II

MODIFY: A MACHINE-INDEPENDENT

MAINTENANCE PROGRAM

THESIS

AFIT/GCS/MA/81D-5 Nancy J. Murphy

Approved for Public Release; Distribution Unlimited

AppMVCed --IF I'U C -

'TDiglributkcn Unlimited

AFIT/GCS/MA/81D-5

MODIFY: A MACHINE-INDEPENDENT

MAINTENANCE PROGRAM

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements of the Degree of

Master of Science

by

Nancy J..,, Murphy, B.S.

Captain USAF

Graduate Computer Science

December 1981

Approved for Public Release; Distribution Unlimited

Preface

This paper documents the procedures, considerations,

and design decisions made, leading to the implementation of

MODIFY, a machine-independent computer program designed to

assist programmers in maintaining source files. MODIFY is

written in standard FORTRAN 77.

My sincere thanks are extended to four people who

supported me during the past nine months. First, my sincere

thanks to Mr. Charles W. Richard, Jr., my faculty advisor,

for his timely guidance, persistence, and constructive

criticism. Second, my thanks to Mr. William K. McQuay, my

sponsor, for his support and guidance throughout the

duration. Third, my thanks to Mrs. Linda L. Schafer, my

typist, for her dedication and attention-to-detail in typing

this report. And last, but definitely not least, my most

sincere appreciation and indebtedness goes to my husband,

Roger, for his patience, understanding, and support

throughout... I love you Roger, and now you are #1 again.

Nancy J. Murphy

AccoRdion For

T .

07 .tCSi.

I MA

DT,
V i -j .- c pDist 43 PE

P .PE~rE

Table of Contents

Preface .

List of Figures iv

List of Tables v

Abstract * vi

I. Introduction * . . . 1

Background * . . . 1
Problem and Solution 2
Scope 2.................... 2
Approach and Presentation 3

II. Detailed Analysis 5

UPDATE Characteristics 6
Literature Review 10
MODIFY Characteristics 12

III. Development of the Program 34

Machine-Dependent Requirements 34
Processing Limitations 37
Program Description 40

IV. Conclusions 49

Results 0 49

Recommendations 50

Bibliography . 51

Appendix A: UPDATE's Capabilities and Files 52

Appendix B: VAX/Cyber Record Length Assignment 62

Appendix C: MODIFY User's Guide 68

Appendix D: MODIFY Functional Charts 105

Appendix E: Description of MODIFY's Subroutines 113

Vita 119

,

i; iii

List of Ficures

I UPDATE File Interaction 8
2 MODIFY File Interaction 18

3 MODIFY Program Library Structure 21

4 Directory Record Contents 27

5 Deck/Comdeck Record Contents 28

6 MODIFY Funtional Structure 42

C-i MODIFY User-Accessible File Interaction . . . 74

D-1 MODIFY Program Overview(A-0) 107

D-2 MODIFY Functional Structure(AO) 108

D-3 Set Control Information(At) 109

D-4 Set Processing Information(A2) 110

D-5 Update Program Library(A3) 111

D-6 Generate Source File(A4) 112

iv
i lL

List of Tables

I MODIFY Features 14

II MODIFY Directives * 16

III MODIFY File Characteristics 19

IV MODIFY Directory Contents 23

V MODIFY Card Image Contents 24

VI MODIFY Job Control Parameters..... 32

VII MODIFY List Options 33

A-I UPDATE Features...... 54

A-II UPDATE Directives 55

A-III UPDATE File Characteristics58

A-IV UPDATE Job Control Parameters 59

A-V UPDATE List Options61

C-I Machine-Dependent Information 71

C-Il MODIFY User-Accessible File Characteristics ... 75

iv

AFIT/GCS/MA/81D-5

Abstract

It is not uncommon for an organization to maintain a

set of files on two or more different computer systems.

Each system has its own way of allowing the user to make

changes to the files, forcing users not only to know those

unique procedures but to make duplicate changes for each

system. Making the same changes to the same files on

different computer systems requires additional time and

increases the risk of making errors. This paper presents

the procedures, considerations, and design decisions made,

leading to the implementation of MODIFY, a machine-

independent batch utility designed to assist programmers in

maintaining source files. MODIFY, which is written in

standard FORTRAN 77, handles routine update/retrieval

functions and provides a complete audit trail of changes.

[v

vi

MODIFY: A MACHINE-INDEPENDENT MAINTENANCE PROGRAM

1. Introduction

The purpose of this project is to design and implementI
a machine-independent software package similar to the

Control Data Corporation (CDC) UPDATE program, a batch

utility capable of creating, updating, and retrieving

compressed sourc~e files in a program library. This chapter

will provide the reader an explanation of why such a package

is needed, the subset of CDC's UPDATE which has been

emulated, and the approach taken in accomplishing the design

and implementation of the machine-independent package along

with an overview of the remaining chapters of this paper.

~Acgioun

The emulation of CDC's UPDATE utility is needed by

personnel from the Analysis & Evaluation Branch, Electronic

Warfare Division, Avionics Laboratory, Air Force Wright

Aeronautical Laboratories, Wright- Patterson Air Force Base,

Ohio (AFWAL/AAWA).

The AAW~A personnel are required to maintain and execute

application programs on two different computer systems. The

primary computer used is a DEC VAX 11/780, but when this

computer is processing classified information, a CDC Cyber

74/750 computer system must be used. Each system has its

own way of allowing the user to make changes to source

files, forcing users not only to know those unique

procedures but to make duplicate changes for each system.

Making the same changes to the same files on two different

computers requires additional time and increases the risk of

making errors.

Problem and Solution

A machine-independent program is needed allowing the

user to make only one set of changes for source files stored

on both the DEC VAX 11/780 and the CDC Cyber 7 4/7 5 0 computer

systems. The Avionics Laboratory personnel are familiar

with and have used a subset of CDC's UPDATE utility in the

past. Therefore, a machine-independent program emulating a

subset of CDC's UPDATE utility is provided.

Scotoe

The machine-independent update utility developed,

called MODIFY, was designed in such a way to recognize

eleven UPDATE directives (i.e., eleven commands) and three

additional directives (commands) not available in UPDATE.

The eleven UPDATE directives supported are the most commonly

used and are:

'ADDFILE
*CALL
*COMDECK
*COMPILE
*DECK
*DELETE
*IDENT
*INSERT
*RESTORE
*SEQUENCE
*YANK

2

Once MODIFY was implemented on the target machine, DEC VAX

11/780, the AAWA personnel could use the same update deck

(using the UPDATE subset) on either computer system. When

(or if) MODIFY is implemented on the CDC Cyber 74l/750

system, the full complement of MODIFY directives will, be

available on both systems, including the three directives

not on UPDATE:

*EDIT
*FILL
*S CAN

Aptroac-h-and Presentation

An extensive study was conducted of CDC's UPDATE

Reference Manual to emulate a subset of its capabilities on

the target machine, the DEC VAX 11/780. Seven other utility

packages were reviewed in an effort to include the most

attractive capabilities (even more than what UPDATE offers)

and to gain insight into the file structures needed to

accomplish the tasks. Once all the directives and file

structure decisions were made, MODIFY was designed, coded,

tested, and implemented on the DEC VAX 11/780. MODIFY is

coded in American National Standards Institude (ANSI)

standard FORTRAN 77, promoting machine independence.

The remaining chapters of this report describe the

steps taken to design and implement MODIFY. Chapter IT

outlines the characteristics and capabilities of already

existing utilities and then describes those capabilities

selected to be included in MODIFY. Chapter III describes

the decisions and assumptions made during the development of

the program and an overview of the program structure.

Chapter IV ties it all together describing the results of

this project and recommendations to enhance MODIFY.

!4

II. Detailed Analysis

A certain amount of research and several decisions

needed to be made before the actual design of the program

was started. Since this project evolved around an already

existing program, the process may seem to be trivial at

first thought. However, FORTRAN has traditionally been a

"computational" language and placed certain limits on this

"data-manipulating" project. FORTRAN was selected, however,

because of its popularity, i.e. most computer systems have a

FORTRAN compiler. Further, of the eight utilities studied,

the manuals available were programmer-guide-type manuals;

giving detailed descriptions on what the utility does and

what the user needs to do to use the package, but very

little on how the utility actually handles the tasks.

Since MODIFY, in part, is a subset of CDC's UPDATE

utility, the first section of this chapter gives an overview

of UPDATE's features, type of runs, directives, file

structures, and control card parameters. The most useful

directives of UPDATE have already been identified and are

included in MODIFY; however, other utility packages have

popular features not available in UPDATE. The second

section of this chapter describes the unique capabilities

and functions of seven other utility packages. The last

section summarizes the characteristics of MODIFY, based on

the results of analyzing the eight utility reference

manuals.

5i

UPDATE Characteristics

UPDATE is a utility package capable of updating and/or

retrieving sets of data stored in one file, called a program

library (PL). A program library contains "decks",

"comdecks", and "idents". A "deck" usually consists of a

source program, but may contain job control language,

subprograms, data, etc. A "comdeck", or common deck,

contains source code which may be inserted into decks or

other comdecks. An "ident" is a correction set which

identifies directives and source-code records used in

updating a deck or comdeck. The rest of this section

outlines UPDATE's capabilities and file structures, the

details of which may be found in Appendix A.

Features (Ref 4:1-2). UPDATE has fourteen features

which are explicitly listed in Table A-I. The features are

not discussed in detail since the descriptions are self-

explanatory. This information was used as an initial step

in deciding MODIFY's capabilities.

Tves of Runs (Ref 4:1-3,1-4). When UPDATE is

executed, one of the three modes of operation is either

implied by the order of the directives or explicitly

selected on the UPDATE job control card. The type of runs

are: creation, correction, or copy.

The basic rule for distinguishing a creation run from a

correction run is: a creation run is implied when UPDATE

does not encounter any directives prior to encountering a

NW

*DECK or *COMDECK directive. It is a "basic" rule because

there are ten directives which may precede a *DECK or

*COMDECK. However, the ten directives are the "hardly-ever-

used" directives and would add little to this discussion.

A correction run usually begins with an 9IDENT

directive but several other directives are permissable. A

one-time-only creation run must establish the program

library before any correction or copy runs may be executed.

A sequential-to-random copy run may be requested by

including an "A" as a parameter on the UPDATE job control

card. A random-to-sequential copy run is requested by

including a "B" on the UPDATE job control card.

Directive (Ref 4:2-1 thru 2-30). UPDATE recognizes

forty-one directives, but eleven of them can handle any

routine update or retrieval function a user may desire.

Many of the directives fall under the "hardly-ever-used"

category while others allow a "different-way-of-doing-it"

option. For example, to insert a new data-card record the

*BEFORE directive or the *INSERT directive can be used.

Table A-II lists the UPDATE directives along with an

acceptable abbreviation and a brief description of each one.

File Structures (Ref 4:3-1 thru 3-15, C-i thru D-2).

UPDATE optionally interacts with six user-accessible files

and six scratch files. Figure 1 depicts this relationship

and identifies the standard name of these files.

t, ..

/
/

/ \ /

OUTPUTN

(0 NWLCOMPILE SOURC

UPDTSCR UPDTCD UPDTTPL UPDTEXT UPDTAD_ UPDTPMD

Figure 1. UPDATE File Interaction

8

The dotted lines indicate optional files, depending on the

type of run. The alphabetic character in parenthesis indi-

cates the UPDATE control card parameter (explained in the

next section) which can be used to change the default name

of the user-accessible files. With the exception of a

creation run, OLDPL is the latest version of NEWPL generated

from a previous UPDATE run. The characteristics of these

twelve files are listed in Table A-III.

The program library contains compressed card images.

UPDATE compresses a card image by replacing three embedded

spaces with 0002, four embedded spaces with 0003,..., 67

embedded spaces with 007700028, etc. Trailing spaces are

not considered as embedded and are not included in the card

image. This reduces the length of most records, thereby

decreasing the amount of space required to store the program

library.

The formats of the records generated by UPDATE for both

random and sequential program libraries are available in the

UPDATE Reference Manual. The description of these records

is not repeated here since the formats were not utilized in

MODIFY. Much of the information involves bit accessibility,

a level FORTRAN 77 cannot handle, and control information

needed to support program libraries created by older

versions of UPDATE.

Control Card Parameters (Ref 4:4-2 thru 4-10). UPDATE

is invoked by including an "UPDATE,pl,p2,...,pn." control

card in the job control stream, where pl, p2,..., pn are

9

optional parameters used to specify modes and files for the

run Table A-IV lists the parameters and their functions.

The List (L) parameter allow the user to specify output

listing options to be invoked. Table A-V lists the

acceptable values and a brief description of what each value

will generate. The default value for a creation run is

A12, for a correction run is A1234.

Literature Review

Several UPDATE-type utility packages are available.

Seven such packages were studied in detail in order to

acquire additional information. This section briefly

outlines the capabilities of the seven utilities, as they

differ from UPDATE.

EDIT (Ref 3) apparently is an early version of UPDATE,

but not nearly as diversified. The thirteen directives

available are a subset of UPDATE, all the files are sequen-

tial, and all the unit information referred to tape drives.

HISTORIAN (Ref 8) is a machine-independent, commer-

cially-available package supporting twenty-one directives in

which all but one make up a subset of UPDATE. The one

directive not supported by UPDATE is *SCAN, or 9SC, and

allows for string search and replacement. The functions

performed by the UPDATE control card parameters are handled

via a HISTORIAN card, the first card before any directives

in the input file. Decks or comdecks containing more than

4095 records must be separated so not to exceed the

10

4095-record limit. HISTORIAN also has a "salvage" run which

attempts to recover program libraries after a machine

malfunction.

LIBRARIAN (Ref 1) is an IBM-oriented package offering

three attractive directives not available in UPDATE. The

"-EDIT" performs the string search and replacement function,

while "-SCAN" performs a string search and print function,

with no replacement. The "-FILL" allows a string of char-

acters to be inserted into specific columns, overlaying the

previous contents. A password may be included with each

deck to minimize the possibility of inadvertently selecting

and updating the wrong deck. A program library may contain

(only) up to twenty modules.

MAWLOGS (Ref 7) is a fairly primitive package with only

four directives: add text, delete text, add module, and

delete module. The directives must be in alphabetic order

by deck name. All files are sequential, and they contain

80-character card images. Any time a deck is altered it is

resequenced automatically, causing line numbers to change

from one update to the next. The package includes a

complete listing of the FORTRAN IV program.

MEDIT (Ref 6) is a limited machine-independent package

and is neither execution-time nor storage efficient. A

"base module" is identified as a sequential file of card

images. A "test module" is the result of a run, but an

updated version is not saved. As additional changes of the

base module are required, the directives are added to the

i 11

WT. - a

update card deck and all previous changes are accomplished

over (and over) for each succeeding run, until all necessary

change3 are realized. Once the module is ready for pro-

duction, an updated version is saved but the history of

changes is lost , because the module is automatically

resequenced. The package only supports five functions: an

insert, a deletion, placement of a "C" in column 1,

placement of a space in column 1 , and replacement of a

string. The package Is primitive, but the manual does

include a complete listing of the FORTRAN IV program.

PANVALET (Ref 9) is an IBM-oriented package with many

functions not included in UPDATE. However, all but one of

these unique functions pertain solely to IBM nomenclature.

The one unique directive which is not machine dependent is

the "EJECT" command which causes the output print file to

advance to the top of the next form.

SAIL (Ref 5) is a machine-independent package which has

similar capabilities as UPDATE but accomplishes its tasks in

an altogether different manner. To outline SAIL's unique

functions would be beyond the scope of this report.

MODIFY Characteristies

This section describes the capabilities and file struc-

tures of the new utility, MODIFY, the result of studying

UPDATE and the seven other packages previously mentioned.

MODIFY is a machine-independent update utility modeled

* after CDC's UPDATE utility. Like UPDATE, a program library

12

is maintained which contains decks, comdecks, and idents.

The user supplies a MODIFY control card and a set of MODIFY

directives and/or data-card records to a MODIFY run. The

supplied information is used by MODIFY to create, update,

and/or retrieve the specified decks.

Feau~tarju. The features of MODIFY are listed in Table I

along with a brief explanation of how the user requests the

features. The differences of MODIFY features as compared to

UPDATE features are described in the next paragraph.

MODIFY does not support sequential program libraries;

therefore, MODIFY cannot copy libraries from sequential to

random format and vice versa, as does UPDATE. Sequential

libraries would not be execution nor storage efficient and

UPDATE probably has the feature to support environments

where magnetic tapes are prominent, rather than disk packs,

and to support previous versions of UPDATE. MODIFY does not

have the merging of two program libraries because of the way

MODIFY processes correction sets, i.e., ident entries cannot

be moved once they are entered into the program library

directory. MODIFY recognizes abbreviated forms of

directives but does not include the capability of turning

off the search for the abbreviated forms. This feature was

not included since MODIFY contains so few directives;

however, if the user wishes to speed up processing (the

reason UPDATE has this capability) the user simply needs to

use the full directive name. The checksumming of a

13

Table I

MODIFY Features

Feature Explanation

- Creation of a PL from No OLDPL identified and
source decks first directive is either

*DECK or 'CONDECK

- Updating of source decks Insert via *INSERT, delete
by inserting, deleting, via 'DELETE, restore via
and restoring cards ac- *RESTORE
cording to sequence in
the deck or according to
correction set

- Ability to completely and A 'DELETE followed by
permanently remove a *SEQUENCE, or generate a
correction sets from the SOURCE file to be input
program library to a MODIFY creation run

- Generation of a compile Any deck updated or
file containing corrected specified on *COMPILE will
output acceptable as input be written to the COMPILE
to other processing file
programs

- Processing of directives, An "I~filename" specified
new text, and new source on the MODIFY card or an
decks from a file other alternate file name
than the job input file specified on the §ADDFILE

- Production of fresh source Include "S" on the MODIFY
decks from the PL card

- Generation of a new, Include "N" on the MODIFY
updated PL card

- Comprehensive list output See Table VII for all the
noting any changes list options
occurring during the run
and status of PL

- Ability to change the Include "*=value" on the
directive card master MODIFY card, where "value"
control character is the new control

character

14

Table I, Con't

MODIFY Features

Feature Explanation

- Recognition of abbreviated MODIFY will automatically
forms of directives accept the abbreviation

form or the long form

- Ability to use full Machine-dependent but ANSI
64-character set, including standard is A to Z, 0 to 9,
the colon and the thirteen special

characters =+-*/(),.$': and
blank

program library deals with sequential program libraries and

is not included in MODIFY.

Tves of Runs. MODIFY supports only the creation and

correction runs, not the copy run. A creation run is

implied if the first directive is either a *DECK or a

'COMDECK. A correction run is implied if the first

directive is either an *IDENT, *ADDFILE, *COMPILE, or *SCAN

directive. An *IDENT directive must be encountered before

any of the eight update-type directives are encountered.

The UPDATE copy run is not supported because MODIFY is not

capable of maintaining a sequential program library.

Dir etives. MODIFY recognizes fourteen directives

capable of handling routine update or retrieval functions.

Table II lists the MODIFY directives along with an accept-

able abbreviation and a brief description of each one. The

asterisk preceding each name is the default directive card

master control character and identifies an input file record

15

Table II

MODIFY Directives

Name Abbreviation Function

'ADDFILE 'AF Add a deck or comdeck to the PL

*CALL *CA Replaces this directive with the
contents of the comdeck identified
when the deck/comdeck is written
to COMPILE

'COMDECK #CD Introduces a common deck, common
code to be inserted into a deck or
another comdeck when CALLed

*COMPILE 'C Specifies decks to be written to
file COMPILE for later compilation

*DECK *DK Introduces a source deck, usually
contains a source program

'DELETE 'D Specified cards are flagged as

inactive and optionally replaced
with cards following the DELETE

*EDIT *ED String search and replacement

*FILL OFl Insert string of characters into
specified columns

'IDENT 'ID Introduces a correction set

*INSERT *I Adds the cards following the
INSERT after the specified
location

'RESTORE 'R Reactivates specified cards and
optionally inserts the cards
following the RESTORE

'SCAN #SC String search and print

*SEQUENCE *S Resequences active cards and
purges inactive cards in specified
deck/comdeck

*YANK #Y Deactivates all cards of specified
correction set, restores
decks/comdecks to previous state

16

as a directive rather than a data card. The *EDIT, *FILL,

and OSCAN directives are not supported by UPDATE, but are

directives taken from LIBRARIAN (Ref 1).

File Structures. MODIFY optionally interacts with six

user-accessible files and five scratch files. Figure 2

depicts this relationship, the dotted lines indicating

optional files, depending on the type of run. The diagram

does not show default file names for the user-accessible

files because these names have not been permanently assigned

in the MODIFY program. The names are to be supplied prior

to impiementing MODIFY, allowing the file names to take on

the format used for any given system. For example, the

default file name for the card reader on the DEC VAX 11/780

is SYS$INPUT, on the CDC Cyber 74/750 is INPUT, and on an

IBM 360 is SYSIN. However, to avoid any confusion which may

occur when discussing the files and their names, the UPDATE

default file names (INPUT, OUTPUT, OLDPL, NEWPL, COMPILE,

and SOURCE) will be used throughout this report. The

alphabetic character in parenthesis indicates the MODIFY

control card parameter (defined in the next section) used to

change the default file name of the user-accessible files.

With the exception of a creation run, OLDPL is Uie

latest version of NEWPL generated from a previous MODIFY

run. The characteristics of the MODIFY files are listed in

Table III. All but two of the files are defined as

formatted, sequential files and no more explanation seems

17

Output Ne<=>opieS

(N) LY

Alt Alt Scratch Scratch Scratch

Inu 5Input Output Comdeck

Figure 2. MODIFY File Interaction

18

Table III

MODIFY File Characteristics

Record
File Type Storage Length Function

Old PL Unformatted Direct, User- Containso old PL
Compressed Supplied

New PL Unformatted Direct, User- Contains new PL
Compressed Supplied

Input Formatted Sequential 80 Contains MODIFY
card and can con-
tain directives
and data cards

Output Formatted Sequential 132 Contains listings
requested via the
"L" control card
parameter

Compile Formatted Sequential 80 Contains execut-
able program
statements suit-
able for
compilation

Source Formatted Sequential 80 Contains "active"
card images

Alternate Formatted Sequential 80 Used as the
Input alternate input

file if specified

Alternate Formatted Sequential 132 Used as the
Output alternate output

file if specified

Scratch Formatted Sequential 80 Contains update-
Input type directives

encountered on
the input file
and data cards
following

Scratch Formatted Sequential 132 Contains results
Output of requesting

list options 7
and 8

19

Table III, Con't

MODIFY File Characteristics

Record
File Type Storage Length Function

Scratch Formatted Sequential 80 Used to hold
Comdeck common decks for

later expansion
of *CALL cards

necessary. However, several decisions needed to be made

before deciding the exact composition of the program

library. An extensive discussion of the characteristics

considered follows.4.The program library file could be sequential- or

direct-access (ANSI standard), formatted or unformatted, and

contain compressed (suppress preceding spaces, drop

succeeding spaces) or uncompressed data cards (store 80-byte

cards). In order to minimize execution time and storage

requirements, the decision to have a direct-access file

organization with compressed cards was made early-on.

The contents of the program library file consists of

fixed-length records, as required for direct-access files,

in which one of the records is used as the directory (REC

#1) and at least one record is generated for each

deck/comdeck introduced (REC #2, REC #3, etc). If the

input-data cards making up one deck/comdeck are more than

will fit in one program library record, MODIFY will auto-

matically start a continuation record (or records) until all

20

hJ 77 =

the input-data cards have been processed. In other words,

the contents of a deck/comdeck may span over multiple

records as depicted in Figure 3. As the diagram shows, the

directory is always REC #1 and any decks introduced may be

stored in multiple records.

REC #1

Directory J Directory Record

REC #2

DECK1

REC #3

DECKI,Con't

REC 44

DECKI,Con't Deck/Comdeck

Records

REC #n-2

DECK1I

REC #n-1

DECK11

REC #n

DECK11,Con't

Figure 3. MODIFY Program Library Structure

21

The directory record is made up of a fixed-length

portion followed by a variable-length portion, the contents

of which is outlined in Table IV. The first two elements

are included only once, whereas at least one set of the last

four elements is needed for each deck/comdeck/ident

introduced to the PL. The set of four elements makes up

what is called a "directory entry". As previously

explained, multiple entries may be generated when the

contents of a deck/comdeck will not fit in one

deck/comdeck-type record. MODIFY will automatically

generate a 'directory entry for each continuation record. An

ident (identifying a correction set) may also cause multiple

directory entries to be generated. The input-data cards

introduced by an ident are not placed in a separate record

but are inserted into the deck/comdeck record(s) specified.

The ident directory entry is used to keep track of the

decks/comdecks updated; that is, the "REC number" element

contains the number of the first record of the deck/comdeck

updated. The linked-list structure (the fourth element of

each directory entry) is used to chain the entries together

to keep track of all records updated by the ident. A more

detailed description of the directory record format is

presented later in this section.

Each deck/comdeck record in the file contains a

variable number of variable-length "card images". Each card

image consists of a variable-length portion holding control

22

Table IV

MODIFY Directory Contents

Information Needed Type

- Number of the next REC available Integer

- Next available directory word Integer

- *Deck/$Comdeck/+Ident name Character

- REC number Integer

- Number of data cards in the deck/ Integer
comdeck/ident

- Directory entry of rest of deck/ Integer
comdeck or that deck/comdeck which
ident updates

information and a variable-length portion holding a

compressed version of the data record's text. The

variable-length control information portion consists of all

but the last element identified in Table V; the last element

makes up the variable-length text portion. The length of

the control information portion will vary depending on the

number of times the card image changes status (active to

inactive, inactive to active). Any time the status changes,

one set of correction set information (CSI) elements (CSI #1
n

and CSI #2) will be generated, where "n" is 1, 2, 3, ... ,
n

for the first, second, third, ... , change made. A more

detailed description of the deck/comdeck record format is

presented later in this section.

23

Table V

MODIFY Card Image Contents

Information Needed Type

- Status (1=active, Ozinactive) Integer

- Sequence number within the deck/ Integer
comdeck/ident introducing the
card

- Number of correction set information Integer
(CSI) sets to follow

- CSI #1 Action of correction set Integern (1:activated card,

O=deactivated card)

- CSI n# 2 Index to array identifying Integer
the ident that introduced/
changed the card

- Number of spaces preceding the text Integer

- Number of characters in the text Integer

- Text Character

The next file structure characteristic requiring con-

sideration for the program library file was selecting

coded-type or binary-type records or, in FORTRAN 77 termi-

nology, formatted I/O or unformatted I/O. Unformatted I/O

is execution-time efficient (and, usually, storage

efficient) since a memory-to-storage, storage-to memory

conversion is not necessary (Ref 10:342). A formatted I/O

file would, on the other hand, allow for easy transport from

one machine to another. However, the sequential, formatted

SOURCE file should be used for this purpose.

The efficiency realized with unformatted I/O is indeed

24

.

attractive; however, because of the variable-length card

images in a record, the use of unformatted READ and WRITE

statements, with predefined variable names, could not be

used. The possibility of reading a record into an array was

evaluated next; however, all data elements stored in an

array are required to be of the same type (i.e., defined as

CHARACTER, INTEGER, or REAL). This requirement presented a

problem, as can be seen in reviewing Table IV and Table V,

since the contents of the library records are made up of a

mixture of CHARACTER-type and INTEGER-type data elements.

FORTRAN does not allow the assignment of one data-type

(e.g., CHARACTER) to a different data-type (e.g., INTEGER)

within a program unit. However, since FORTRAN does not make

the "consistency" check of' items passed to a subroutine, the

problem was eliminated. That is, a CHARACTER-type element

can be passed to a subroutine and the corresponding dummy

argument defined in the subroutine can be of type INTEGER.

Within the subroutine, the INTEGER-defined element is moved

to a second INTEGER-defined element, which is also defined

as a dummy argument and used to pass the element back to the

calling program. The calling program's second actual

argument would be defined as INTEGER, thereby having an

INTEGER-defined version of the CHARACTER-defined data

element.

The final decision was made, then, to have unformatted

I/O records which would be generated/retrieved via an

INTEGER-type array. That is, a program library record is

25

Z4 r-

written from, and read into, an integer array defined in

main memory. Each integer element defined in Table IV and

Table V occupies one word of memory and the character

elements occupy a variable number of words in memory,

depending on the number of characters in the element and the

number of bytes in a word (machine dependent).

Figure 4 graphically displays the contents of REC #1,

the program library directory, as it appears in the integer

array. Each box represents one word in memory. Three words

are reserved for the character-defined deck/comdeck/ident

name. This element could have been made variable, but an

additional word would have been necessary to keep track of

the number of characters in the name. The number of words

needed depends on the length of the character string and the

number of bytes in a word. The maximum length allowed for a

deck/comdeck/ident name is nine characters and with the * to

designate a deck, or $ to designate a comdeck, or + to

designate an ident, the element could be up to ten

characters in length. The number of bytes per word on the

DEC VAX 11/780 is four and the number of bytes per word on

the CDC Cyber 74/750 is ten. Therefore, if the name was ten

characters, three words would be needed on the VAX and only

one word on the Cyber. To allow for the worst case and make

it easier to "skip" through the array, three words are

reserved for the deck/comdeck/ident name.

Figure 5 graphically displays the contents of each

remaining record in the program library file, as they would

26

The fixed-length portion is
x represented by x and y,

y where x is the number of the
next available REC

y is the next available

a 7 directory word

First The variable-length portion is
Directory made up of a variable number of

b Entry directory entries in which one
entry is represented by a, b, c,

c I and d,

d Iwhere a is the *DECK/$COMDECK/
1 " +Ident name

b is the (first) REC number
S2 1 where the contents of

the deck/comdeck/ident
Second in "a" is stored
Directory

b2 Entry c is the sequence number of
the last input-data

c2 card introduced in2 I the deck/comdeck/ident
d 2 in "a"

d is an index to the
directory entry which
contains continuation
information for the
deck/comdeck/ident

aT in "a"
an

Nth n is the total number of

Directory directory entries
Entry generated.

b
n

n
dni

Figure 4. Directory Record Contents

27

a 1One card image contains a variable-length1 control information portion represented by
b First a,b,o,d,e,and f, and a variable-length

Card text portion represented by g,

c IImage
1 where a is the status (1=active,

d1 O=inactive) of the card image

b is the sequence number within the
deck/comdeck/ident

e. introducing the card

fl c is the number of correction set
. ,information (CSI) sets in "d"

9d is the area of the "c" CSI sets; a
set consists of two words
where the first word repre-

a2 sents the action of the
2 ,correction set (1=activated
b^ 2 card, O=deactivated card)

Second and the second word contains
c 2 Card an array index identifying the

Image ident causing the change.

f2 |e is the number of spaces preceding

the text portion

92 -f is the number of characters in the

text portion

g is the text portionan
n n is the number of card images in
b one record

Nth
cn Cardn Image

d
n

en

f
n

gn

Figure 5. Deck/Comdeck Record Contents

28

appear in an integer array. A variable-length "card image"

is generated for each card in a deck/comdeck. Again, each

box represents one word of memory.

As card images are generated, the number of words

needed depends on the way the card image is introduced, the

number of characters in the text portion, and the number of

bytes in a word. A card image introduced with a *DECK or

#COMDECK directive does not need any correction set informa-

tion (CSI) sets, represented by "d" in Figure 5; therefore,

the card image would occupy five words for control informa-

tion and a variable number of words for the text portionii(represented by "second card image" in Figure 5). On the

other hand, a card image introduced by an *IDENT directive

(record inserted) would need a CSI set (two words) to iden-

tify the ident introducing the card image, thereby occupying

seven words for control information and a variable number of

words for the text portion. Each time a card image changes

status, another set of CSI words is needed, up to a maximum

of 20 CSI sets (only 20 changes allowed). In the worst

case, the control information section of the card image

would occupy forty-five words (twenty CSI's occupying forty

words plus the other five words of control information).

The number of words needed to store the character text

portion of each card image is dependent on the number of

characters in the text and the number of bytes in a word

(same as the deck/comdeck/ident name in the directory

record). In this case, since the number of characters range

29

from 0 to 80 characters, one word is reserved to keep track

of the number of characters in the text portion, rather than

reserve a fixed number of words. The least number of words

occupied by a card image would be realized if a blank card

was introduced via a *DECK or *COMDECK. The card image

would occupy only five words, for the minimum number of

control information elements. In the worst case where the

card image changed status twenty times (the maximum allowed)

and the text portion contained 80 characters, the card image

would occupy sixty-five words on the VAX and fifty-three

words on the Cyber. The following calculations show how

these totals were derived.

VAX Cyber
(4 bytes per word) (10 bytes per word)

5 Fixed, Control Information 5
40 20 CSI's, 2 words each 40
20 Text portion (80 bytes) AL

65 Total Words Occupied 53

The remaining file structure characteristic requiring

consideration was the length of each record in the program

library file. It is not known if MODIFY will be used (by

users other than AFWAL/AAWA) to maintain many little decks

and/or comdecks requiring many directory entries but a small

number of card images, or a few large decks/comdecks

requiring few directory entries but a large number of card

images. MODIFY has been designed to be as flexible as

possible to the user's needs, and the record length decision

30

ilaw

must be made prior to implementing MODIFY on any given

computer system. A more detailed discussion of this issue

is presented in Chapter III.

Control Card Parameters. MODIFY supports eleven of the

twenty-six UPDATE parameters, but the parameters are not

specified on the job control statement used to invoke

MODIFY. The parameters are, instead, listed on a "MODIFY

Card" (MODIFY,pl,p2,...,pn), which must be the first card in

the input file. This must be the system's designated input

file (the card reader) and not an aternate input file. The

eleven parameters supported by MODIFY are listed in Table VI

and are all optional. However, a MODIFY card must always be

submitted even though there are no parameters specified.

The "mode" parameters, F and Q, specify the order that

decks are to appear on COMPILE. The Full (F) mode ignores

*COMPILE directives and updates all decks in the sequence

encountered on the library. The Quick (Q) mode allows

*COMPILE directives to specify decks written to COMPILE in

the order encountered on the library, unless "K" is also

specified then decks are in the order specified on *COMPILE

directives. If neither Full nor Quick is specified, a

Normal mode is implied. The Normal mode writes to COMPILE

all decks specified on *COMPILE directives plus decks

updated, in the order encountered on the library. If "K" is

specified, decks are in the order specified on *COMPILE

directives followed by any others updated.

The List (L) parameter allows the user to specify out-

31

Table VI

MODIFY Job Control Parameters

Option Significance

C Compile file output

F Full update mode

I Input file

K Decks written to COMPILE in order
specified by *COMPILE directives

L Output listing options

N New program library output file

I O Output listing file

P Old program library file

Q Quick update mode

S Source output file

* Directive card master control

character

put listing options to be invoked. Table VII lists the

acceptable values and a brief description of what each value

will generate. The default value for a creation run is A12,

for a correction run is A1234. All but two of UPDATE's

options are supported and one option is included that is not

provided by UPDATE. The UPDATE options 5 and 6 are not

supported, but the numbers have been reserved so that they

could easily be included in a later version of MODIFY. A

new Option B for alphabetized lists was included to allow

the user to easily locate a specified deck/comdeck/ident

32

L_ ~ q -. -- o -. i - - --- --. . -- : -= . -.- ;.. f- 7. _

Table VII

MODIFY List Options

Option Significance

A Lists known decks/comdecks/ident names and
deck names written to COMPILE file

F All selections other than 0

0 Suppresses all MODIFY listings

1 Lists cards in error and the associated

error messages

2 Lists all active MODIFY directives

encountered either on input or on the old

program library

3 Lists all cards that changed status during
MODIFY run

4 Lists all non-MODIFY directives encountered

in the input stream

7 Lists all active cards

8 Lists all inactive cards

9 Correction history of all cards listed as a
result of list options 7 and 8

B Three alphabetic lists by deck, comdeck,

and ident names

name. As the list of names grows, it sometimes is hard

to locate specific names.

The descriptions of the remaining MODIFY control card

parameters listed in Table VI are self-explanatory and are

not discussed further here. A detailed description of the

MODIFY Control Card Parameters, along with the MODIFY

directives, can be found in the MODIFY User's Guide,

Appendix C.

33

III. Development of the Proaram

Writing a machine- independent software package cannot

be accomplished without requiring some machine-dependent

information. The first section of this chapter defines the

information which must be supplied before MODIFY is

implemented. The second section outlines in detail how

directory entries are generated which, in turn, can decrease

the expected number of deck/ comdeck/ ident names allowed.

The last section gives an overview of how the program works.

Machine-Dependent Recuirements

This section defines the information which must be

supplied prior to implementing MODIFY. The information

required consists of the values needed for three constants,

an integer array, and a character array.

Default File Names. The FORTRAN 77 OPEN statement

contains an optional parameter, FILE, which gives the name

of the file being connected to the unit. This parameter is

used in the MODIFY OPEN statements; therefore, default names

for the six user-accessible files must be assigned. The

values assigned are placed in a character array.

The assignment of these file names could have been

fixed; however, the assignment has been left until

compilation so that file names corresponding to each

particular system could be used. The decision to use the

FILE parameter will also allow the user unfamiliar with

34

FORTRAN default names to use MODIFY without having to learn

those names (e.g., the VAX default is FOROxx, and the Cyber

default is TAPExx, where "xx" is the unit number). It is

recommended that the system-default names be used for the

input and output files (i.e., VAX input is SYS$INPUT and

output is SYS$OUTPUT; Cyber input is INPUT and output is

OUTPUT). It is also recommended that standard names be

selected for the remaining user-accessible files to avoid

any confusion when working with different computer systems.

That is, using the names OLDPL, COMPILE, NEWPL and SOURCE as

default file names for the remaining user-accessible files

should eliminate any ambiguity about the contents and/or

purpose of the files. The use of these file names would

also correspond to the names used throughout this report, as

well as the MODIFY User's Guide, and would also help in

eliminating any ambiguity.

The last entry of the character array defines the

default value of the directive card master control

character. It is recommended that the asterisk be assigned

to correspond with the user's manual. However, the

programming language used by the majority of MODIFY users

may dictate that a character other than an asterisk be used.

For example, standard FORTRAN 77 permits the use of an

asterisk in column 1 to denote a comment. If the asterisk

is used extensively to denote a comment, it may be desirable

to use a different master control character. An asterisk as

the default value would force users to change the default

35

value every time MODIFY is run.

File Name Lenath. The maximum length of the file names

must be provided. At compilation time the default names are

provided, but the user of MODIFY still has the option of

changing the default names (via the MODIFY control card

parameters). A check is made to insure that the name

submitted on the MODIFY card does not exceed the system's

filename limit (e.g., VAX = 9 characters, Cyber = 7

characters).

Unit Numbers. FORTRAN requires that all READ and WRITE

statements identify a unit number (1-99) corresponding to

the appropriate file. Some computer systems assign a unit

number to a specified device (e.g., the VAX assigns unit 5

to the card reader and unit 6 to the printer). The eleven

files used by MODIFY, therefore, must be assigned a unit

number. The values are placed in an integer array and used

accordingly. It is recommended that system default unit

numbers be used when appropriate (e.g., on the VAX),

otherwise any eleven numbers from 1 to 99 may be selected.

Word Length,. The number of bytes in a word makes a

significant difference in determining the size of the

program library file. This information varies from one

computer system to another and must be provided. The

difference between the VAX and Cyber illustrates this

variability. The VAX is a 32-bit machine, with 8-bit bytes,

and 4-byte words. The Cyber is a 60-bit machine, with 6-bit

bytes, and 10-byte words. The reason for needing this

36

information has already be explained in Chapter II's "MODIFY

Characteristics" section.

Record Length. The remaining constant required deals

with the length of each record in the program library file.

FORTRAN requires that this assignment be made for

direct-access files, and the unit of assignment is

machine-dependent.

The record length value selected has a tremendous

impact on storage efficiency and places some limits as to

the capabilities of MODIFY. Because of the importance of

selecting an appropriate value, a separate section has been

written to discuss the impact of this assignment.

Processing Limitations

This section outlines the importance of selecting an

appropriate value for the record length parameter, RECL,

which appears in the OLDPL and NEWPL OPEN statements.

Since both the VAX and Cyber requires the unit of assignment

to be in "words", this discussion will focus on determining

the number of words in each record.

The contents of the directory record consists of two

one-word elements and a variable number of six-word elements

(a directory entry). Recall that at least one directory

entry is generated for each deck/comdeck/ident introduced

(see Figure 4). Therefore, a record length of 602 words

would allow for 100 deck/comdeck/ident names. On the other

hand, the record length of 602 words would, on the average,

37

42.

allow for 40 card images on the VAX (66 on the Cyber) in a

deck/comdeck record. These averages are representative of

introducing a new deck/comdeck (no CSIs generated) and the

average length of the text portion is 40 characters. The

following calculations show how the averages were derived.

VAX Cyber
(4-byte words) (10-byte words)

5 Control Information 5
(no CSI words)

Text portion (40 bytes) 4

15 Words per card image 9

Divide the values into 602 words

40 Card images per record 66

The example shows that a record would hold only a

minimal number of card images (card-input records) and does

not account for the need of additional words when updates

are requested. Additional words are needed each time a card

image is changed (a 2-word CSI is generated) and anytime a

new card-input record is introduced (a new card image is

generated). On the other hand, if a large number of small

comdecks (say 2-to-3 lines of code) are introduced, the 40

(or 66) card images would be more than enough, and space

would be wasted.

In an effort to eliminate wasted space but allow a

deck/comdeck to grow, MODIFY will automatically place card

images in continuation records and update the directory

accordingly. This is all transparent to the user, but does

38

. ..

require an additional entry in the directory for each

continuation generated, decreasing the number of decks

allowed in the program library.

Multiple directory entries may also be needed for any

one ident name introduced. An ident name is used to change

and/or add card images to already existing decks/comdecks.

If the directives in one run requests changes to card images

in, say, five different decks, then five directory entries

will be generated. Each entry will identify the program

library record updated. If a change to any of the ident

card images is then requested, MODIFY needs only search

those five records to find the card image, and not all the

records in the library.

Because of the continuation of decks/comdecks and

multiple entries needed for idents, the directory must be

larger than just allowing for a reasonable number of

decks/comdecks/idents. Once the directory is full, MODIFY

will no longer process any update-type requests. There is a

way, however, to allow changes to continue. At the end of

each run MODIFY will automatically print the number of

entries left in the directory. There is no provision to

"clean up" the directory so, when the entries are all used,

it is suggested that a SOURCE file be generated. The SOURCE

file can then be designated as the input file to a MODIFY

creation run. This will eliminate all the historical

information, but will allow additional changes to be made.

It is recommended that the record length assignment be

39

made based on the average size of decks/comdecks (to save

space) but also allow the directory to have room for twice

as many decks/comdecks/idents expected. See Appendix B for

a discussion of the record length selected for the DEC VAX

11/780 and CDC Cyber 74/750 computer systems.

Program DescriPtion

The MODIFY program is used to maintain and retrieve

source files located in a program library. This concept

allows the user to store multiple source files under one

file name thereby using less computer resources (e.g., one

entry in the file name table). MODIFY also allows the user

to define "common code" which requires only one change to

the common deck rather than a change for every place the

code is used. The main advantage of MODIFY is, however, the

capability of tracking all previous changes made to the

source code. By revoking the effects of an ident (via

*YANK), the source code changed is returned to its previous

state. All operations of the MODIFY program occur in

response to the user-supplied MODIFY Card and the input

transaction file containing MODIFY directive cards and/or

data cards.

The MODIFY Card must be the first card on the input

transaction file and may optionally include up to eleven

parameters (see Table VI). The MODIFY parameters allow the

user to specify which files are to be generated, the run

mode, and the order .in which the decks are to be processed.

40

The fourteen directives Csee Table II) allow the user to

specify the exact line(s) of code to be updated and/or the

decks to be retrieved for compilation. A more detailed

description of the parameters and directives can be found in

the MODIFY User's Guide, Appendix C.

Program Structure. The basic functional structure of

the MODIFY program is indicated in Figure 6. Appendix D

provides a more detailed set of Structured Analysis and

Design Technique (SADT) charts which depict the primary

configuration of the program. MODIFY consists of the main

program and 54 subroutines. A brief description of each

subroutine is provided in Appendix E. The main program

basically contains six CALL statements which causes each of

the four primary functions to be executed (SADT charts do

not depict housekeeping functions).

The "Set Control Information" routine processes the

MODIFY Card. The card is validated and then used to set

appropriate values in three arrays. A character array

contains the file names and the directive card master

control character. One logical array is used to indicate

which files are to be generated, the run mode (full, quick,

or normal), and the run type (creation or correction).

Another logical array is used to indicate which list options

are to be generated. The information contained in these

arrays iz used continually by the update routines.

The "Set Processing Information" routine processes the

input transaction file. Each directive is validated and

41

.. .- . ..--- .. .

zT-

0O'-4 C4 F-4 0 4

C-)

E14

CCo

COC

Ez-
-3 C)

low w

:0.4 '-4

W z -4

C-'j

03
H -q

1:0

04 42W

selected information is retrieved and placed in the

appropriate arrays. Those directives which can have data

cards following (the *DECK, *COMDECK, *DELETE, *INSERT, and

*RESTORE) are placed in the scratch input file or the

scratch comdecc file, along with the data cards. The

information generated by this routine is also used

continually by the update routines.

The "Update Program Library" routine controls the bulk

of the work. The control information depicting the user's

desires is all available and the actual updating/retrieving

begins. The creation run requires little processing since

no updating takes place. Each record on the scratch comdeck

file and the scratch input file is used to generate a card

image for the NEWPL file and the text portion is written to

the OUPUT file. The text portion of non-directive card

images is written to file COMPILE, replacing *CALL

directives with the contents of the specified comdeck.

The correction run tests the overall program strategy;

that is, to locate a particular line of code as efficiently

as possible, make the specified change, and provide the user

with an updated copy suitable for compilation. The old

program library directory is brought into memory, and

selected data is merged along with the new deck/comdeck/

ident data (generated from the input transaction file by the

"Set Processing Information" routine) into another array.

The deck/comdeck/ident names in the merged-data array are in

the order of (1) previous ident names, (2) new ident names,

43

and (3) the deck and comdeck names. New deck/comdeck names

are placed after previous deck/comdeck names unless an

#ADDFILE directive identifies a specific order. If an

OADDFILE does identify a specific order, the new

deck/comdeck names will be inserted appropriately. The

order of the deck names can be important because this

merged-data array is used to determine the order that decks

are processed (order of decks in the COMPILE file).

Any directives submitted with references to the

contents of a comdeck are processed first. The appropriate

program library record is brought into memory and the

specified change is made. The text portion of each active

card image is written to the scratch comdeck file and the

text portion of all card images is written to the OUTPUT and

NEWPL files (according to MODIFY control card parameters

selected). After all selected comdecks have been updated or

introduced, any remaining comdeck records are brought into

memory and the text portion of the active card images is

written to the scratch comdeck file. The scratch comdeck

file is used when the contents of decks are written to

COMPILE (to replace *CALL directives with the contents of

the comdeck specified on the *CALL).

Any remaining directives, referencing the contents of a

deck, are processed next. The order of the decks selected

depends on the run mode. The "full" mode selects decks in

the order encountered on the merged-data array. The "quick"

mode selects those decks specified on *COMPILE directives,

44

in the order encountered on the merged-data array. However,

if the "K" control card parameter is specified, the decks

are selected in the order specified on the *COMPILE

directives. The "normal" mode selects those decks specified

on *COMPILE directives and decks to be updated, in the order

encountered on the merged-data array. However, if the "K"

control card parameter is specified, the decks are selected

in the order specified on the *COMPILE directives followed

by the decks updated in the order encountered on the

merged-data array.

As new deck names are selected, the scratch input file

is searched looking for the deck's input-data records. Each

input data record is used to generate a card image, and the

text portion of the card image is written to the appropriate

files. Continuation records are generated automatically as

they become necessary.

As previously known deck names are selected, the REC

number element of the directory entry is used to bring the

deck's (first) record into memory. If the deck is not to be

updated (no directives reference the contents) the record is

written to NEWPL. If the deck is to be updated, the text

portion of each card image is brought out of its compressed

format (regains its original image in a 80-byte field).

The card image sequence number is examined, looking for

a match with the sequence number specified on the deck's

update directives. If the sequence numbers do not match,

the text image is written to the OUTPUT, COMPILE, and/or

45

4 -4 I

NEWPL files. If the sequence numbers match and a change is

to be made, the status of the card image is changed (active

to inactive or inactive to active), the text image is

written to OUTPUT, and a card image is generated for the

NEWPL record. The specified change is made to the text

image, the new text image is written to the OUTPUT and

COMPILE files and a card image is generated for NEWPL. if

more card images are located in a continuation record

(indicated by the fourth element in the directory entry),

that record is "brought in" arnd the process continues until

al.l records storing the deck's card images have been

processed.

A certain amount of processing control is handled by

the routines used in building the OUTPUT, COMPILE, and NEWPL

files. A carriage control character is assigned to each

OUTPUT record written, allowing only a predefined number of

printed lines per page, starting each page with a header and

numbering each printed page. The routine that builds

COMPILE must examine each active card image and replace any

*CALL directives with the appropriate comdeck records. The

routine that builds NEWPL insures that there are enough

words available in the integer array to hold the card image.

If the card image will not fit, the array is written to the

appropriate NEWPL record and a continuation record is

started. If the previous version (OLDPL) did not require a

continuation record for the deck, the next available REC

number is fetched, the directory entry updated, and a new

46

directory entry generated.

Locating all the lines of code specified on a *YANK

directive can require more search and processing time. The

*YANK identifies correction sets to be revoked, where a

correction set may have changed card images spanning across

a variable number of decks/comdecks, which may span across a

variable number of records. The ident name is located in

the directory and the REC number element of the entry is

used to bring into memory the first deck containing a change

specified by the correction set. All the card images in the

deck's record(s) are examined and written to the appropriate

files. If the ident made changes to, say, five different

deck names and the contents of each deck is stored in two

records, the card images In the ten records would be

examined and processed as previously explained.

Once all decks have been processed, the NEWPL directory

record is generated. The OLDPL directory and the

merged-data array are used to generate the NEWPL directory.

The "Generate Source File" routine is executed only if

the user requests that the SOURCE file be generated. The

routine uses the NEWPL directory to first retrieve comdeck

records and then deck records, writing only "active" records

to SOURCE.

Data Structures. The program contains common blocks to

allow the subroutines easy access to the common data

structures. The common area includes 28 integer elements,

10 integer arrays, 6 character elements, 12 character

J4 7

arrays, and 5 logical arrays. One of the lower-level

subroutines uses a stack structure to control the building

of file COMPILE.

The scratch comdeck file is used to contain the records

of all common decks, new and old. When file COMPILE is to

be generated with the contents of requested deck records,

each *CALL directive is replaced with the contents of the

comdeck specified. As comdeck records are written to file

COMPILE, any *CALL directives must also be replaced with the

contents of that comdeck specified. The stack structure is

used to store the placement of a *CALL directive in the

scratch comdeck file so that remaining records of a comdeck

will also be written to COMPILE.

This concludes the discussion of analyzing and

developing the machine-independent utility MODIFY. Version

1 was implemented on the DEC VAX 11/780.

48

, 48

IV. Conteluis ions

The primary objective of this project, as outlined by

AF1WAL/AAWA requirements, was to provide a machine-

independent software package emulating a subset of CDC's

UPDATE utility program. An additional objective was to

include additional features not available on UPDATE,

specifically a string search and replacement option. This

chapter summarizes the results of the MODIFY design and

implementation effort and provides a few recommendations to

enhance MODIFY.

Results

The MODIFY specifications described in the preceding

chapters of this report were completely designed, coded, and

implemented. However, as of this date, not all of the

functions have been thoroughly tested and validated. The

complete package should be available by the end of this

month, accomplishing all the functions described.

Recommend-ations

Three areas of improvement have been identified and

will be discussed: additions to the MODIFY command

language, revisions of the program to provide interactive

capabilities, and the inclusion of more output list options.

MODIFY is designed to accomplish normal update/

retrieval functions; however, as indicated by the number of

49

commands available in CDC's UPDATE package (e.g. 41 direc-

tives), MODIFY is limited (14 directives). The inclusion of

additional directives would enhance MODIFY, specifically in

the area of removing obsolete names from the program library

directory. 0

MODIFY is designed to accept batch inputs (via cards or

intercom). Because of the growing availability of CRTs,

MODIFY would be a more valuable tool if it was redesigned to

allow for interactive use. That is, include the logic

necessary to prompt the user for the actions desired.

The last recommendation to enhance MODIFY includes the

addition of more output list options. The two optionsIincluded in UPDATE but not in MODIFY, are suggested: A
listing of all active compile file directives and a listing

giving the number of active/inactive cards by deck name and

correction set identifier.

50

Bibliography

1. Applied Data Research. The LIBRARIAN User Reference
Manual. SL2G-1O-O0. Release 5.5. Applied Data
Research, Inc., August 1976.

2. Balfour, A. and D. H. Marwick. Prozramming in Standard
FORTRAN 77. New york: North-Holland Inc., 1979.

3. Control Data Corporation. Terminal Facility Controller
EDIT Program Reference Manual. 82171400. St. Paul,
Minnesota: Control Data Corporation, 1973.

4. Control Data Corporation. UPDATE Reference Manual.
60342500. Revision H. Sunnyvale, California: Control
Data Corporation, January 1978.

5. Graham, David C., Lewis P. Gaby, II, and Clifford E.
Rhoades, Jr. SAIL. An Automated Annroach to Software
Development and Management. Kirtland Air Force Base,
New Mexico: Air Force Weapons Laboratory, Air Force
Systems Command, October 1976.

6. Hurt, James J. MEDIT--A Program to Edit Computer
Source Programs. DTIC AD Number: A034524. U. S. Army
Armament Command, Research Directorate, April 1976.

7. Kessinger, Richard L. and Howard A. Markham. MiLes..
the US Army Worldwide Logistic System (MAWLOGS). Volume
IV. Programmers's Guide. Contract DAHC19-69-C-0017;
DTIC AD Number: 923126L. McLean, Virginia: General
Research Corporation, August 1974.

8. OpCode. The HISTORIAN User's Manual. Houston, Texas:
OpCode, Inc.

9. Pansophic Systems. PANVALET User Reference Manual OS.
OSUP10-7811. Version 10. Pansophic Systems, Inc.,1978.

10. Wagener, Jerrold L. FORTRAN 77 Principles of
Prozramming. New York: John Wiley & Sons, 1980.

* , 5 1

UPDATE's Caoabllities arnd-Files

52

- s~ ~eflAppendix A-

UPDATE's Capabilities and Files

This appendix contains five tables providing a detailed

account of the features, directives, file characteristics,

job control parameters, and list options of the Control Data

Corporation (CDC) UPDATE utility package. A discussion of

these items may be found in the "UPDATE Characteristics"

section of Chapter II.

53

Table A-I

UPDATE Features

- Creation of a program library from source decks.

- Copying of old program libraries from sequential to

random format and vice versa.

- Merging of two program library files.

- Updating of source decks by inserting, deleting, and
restoring cards according to sequence in the deck or
according to correction set.

- Ability to completely and permanently remove correction
sets from the program library.

- Generation of a compile file containing corrected
output acceptable as input to other processing
programs, such as compilers and assemblers.

- Processing of directives, new text, and new source
decks from a file other than the Job input file.

- Production of fresh source decks from the program
library.

- Generation of a new, updated program library.

- Comprehensive list output noting any changes occurring
during the run and status of the program library.

- Ability to change the directive card master control
character.

- Recognition of abbreviated forms of directives and
capability of turning off the search for the
abbreviated forms to speed up processing.

- Ability to use full 64-character set, including the
colon.

- Checksumming of program library.

54

.1

Table A-II

UPDATE Directives

Name Abbreviation Function

#ABBREV none Abbreviations will be recognized

'ADDFILE OAF Add a deck or comdeck to the PL

*BEFORE *B Adds the records following the
BEFORE before specified location

*CALL *CA Replaces this directive with the
contents of the comdeck identified
when the deck/comdeck is written to
file COMPILE

*CHANGE *CH Change the name of a correction set
defined by an IDENT1 COMDECK *CD Introduces a common deck, common
code which may be inserted into a
deck or another comdeck when CALLed

*COMPILE *C Specifies decks to be written to
file COMPILE for later compilation

'COPY *CY Copy specified records from one
deck/comdeck to another deck/comdeck

'CWEOR *CW Conditionally writes an end-of-file
indicator in file COMPILE

*DECK *DK Introduces a source deck, usually
contains a source program but can
contain job control language, sub-
programs, data, etc.

*DECLARE ODC Identifies decks/comdecks to be
altered, protects against
inadvertant updates

*DEFINE *DF Establishes conditional condition to
be tested by *IF

'DELETE OD Specified records are flagged as
inactive and optionally replaced
with records following the DELETE

*DO none Reverses the effects of YANK or
SELYANK on specified correction set

55

Table A-II, Con't

UPDATE Directives

Name Abbreviation Function

'DONT *DT Terminates *DO

*END none Denotes end of source code

'ENDIF *EI Indicates the end of conditional
text, terminates 'IF

*ENDTEXT OET Indicates the end of text,
terminates *TEXT

'IF none Conditionally writes text to file
COMPILE

'IDENT #ID Introduces a correction setIINSERT *1 Adds the records following the
INSERT after the specified location

*LIMIT *LT Specifies maximum size for the listoutput file

'LIST #L Terminates effects of 'NOLIST

'MOVE 0M Reorders decks while producing NEWPL

'NOABBREV *NA Do not accept directives
abbreviation format

'NOLIST 'NL Stops the listing of input file

records

'PULLMOD 'PM Recreates correction sets

'PURDECK 'PD Permanently removes all records of
specified deck/comdeck

'PURGE 'p Permanently removes all records of
specified correct set, restores
decks/comdecks to previous state

*READ *RD Temporarily read from an alternate
directives file then return to INPUT

'RESTORE #R Specified records are reactivated
and optionally inserts the records

following RESTORE

56

I

Table A-II, Con't

UPDATE Directives

Name Abbreviation Function

*REWIND ORW Repositions specified file to first
logical record

*SELPURGE OSP Permanently removes records of
specified correction set located in
specified deck/comdeck

OSELYANK *SY Deactivates records of a correction
set located in specified deck/
comdeck

*SEQUENCE *S Resequences active cards and purges
inactive cards in specified
deck/comdeck

*SKIP *SK Skip specified logical records in
specified file

*TEXT OT Treats following records as data,
allowing data to have asterisk in
column 1

'WEOR 'W Writes end-of-file indicator in file
COMPILE

*YANK 'Y Deactivates all records of specified
correction set, restores
decks/comdecks to previous state

OYANKDECK 'YD Deactivates all records of specified
deck/comdeck

1/ none Indicates comment card

'. 57

Table A-III

UPDATE File Characteristics

File Name Type Storage Function

INPUT Coded Sequential Provides control infor-

mation

OUTPUT Coded Sequential Contains LIstings

COMPILE Coded Sequential Contains card images for
compilation

SOURCE Coded Sequential Contains "active card
images with no sequencing
information

OLDPL Binary Random or Contains old program
Sequential, libraryCompressed

NEWPL Binary Random or Contains new program
Sequential, library
Compressed

UPDTSCR " *' Used to make copy of decks
to be written to file
COMPILE

UPDTCDK '* *' Used to hold common decks
for later expansion of
*CALL cards

UPDTTPL *' Used as temporary program
library

UPDTEXT *0 Used to copy card images to
be inserted in correction
run

UPDTAUD 0* '' Used to hold temporary
audit information

UPDTPMD 0* Used to collect card images
in response to PULLMOD
directive

0* Information not provided

58

Table A-IV

UPDATE Job Control Parameters

Option Significance

A Sequential-to-random zopy

B Random-to-sequential copy

C Compile file output

D Data width

E Edit; provides a means of cleaning up old
program libraries

F Full update

G Generate separate PULLMOD output file

H Header change

I Input file

K COMPILE file sequence

L List options

M Merge two program libraries

N New program library output

0 List output file

P Old program library

Q Quick update

R Rewind files

S Source output file

T Source output file excluding common decks

U Debug mode

W Sequential new program library

X Compressed compile file

59

Table A-IV, Con't

UPDATE Job Control Parameters

Option Significance

Z Compressed input file

8 80-column output on compile file

* Master control character

/ Comment control character

60

Table A-V

UPDATE List Options

Option Significance

A Lists known decks/comdecks/ident names,
deck names written to COMPILE file, and
known definitions

F All selections other than 0

0 Suppresses all UPDATE listings

1 Lists cards in error and the associated
error messages

2 Lists all active UPDATE directives
encountered either on input or on the old
program library

3 Lists all cards that changed status during
, UPDATE run

4 Lists all non-UPDATE directives encountered

in the input stream

5 Lists all active compile file directives

6 Lists the number of active and inactive
cards by deck name and correction set
identifier

7 Lists all active cards

8 Lists all inactive cards

9 Correction history of all cards listed as a
result of list options 5, 7, and 8

61

'-Z IM

VAX/Cvber FRecord Length AsslanMenat

62

S . .. - - -1 9--9. . . .

VAX/Cvber Record Length Assianment

FORTRAN 77 requires that the length of records in a

direct-access file be provided by the RECL parameter on the

OPEN statement. Because the MODIFY program library is a

direct-access file, the record length assignment must be

determined prior to compilation. This appendix provides a

detailed discussion of the record length values selected for

the DEC VAX 11/780 and the CDC Cyber 74/750 computer

systems, as required by the AFWAL/AAWA processing

environment. The unit of assignment is machine dependent,Ibut since both the VAX FORTRAN and CDC FORTRAN requires that

the assignment be in "words", this discussion will focus on

the number of words needed.

The AAWA personnel have been using program libraries to

store a large number of decks containing a minimal number of

cards. The requirement was established by AAWA personnel

that a record length value be selected which would

accommodate approximately 500 directory entries and allow

each program library record to contain approximately 150

card images.

VAX Regcrd Length Assignment

The smallest addressable unit of information on a disk

is a 512-byte block (128 words). Blocks are logically

grouped into a cluster which is the basic unit of disk space

63

allocation. The number of blocks in a cluster is

installation dependent and currently AAWA personnel have

each of their three disk packs configured differently (3, 6,

and 11 blocks in a cluster). The disk pack to be used to

store MODIFY contains 3 blocks in a cluster; therefore, the

record length value selected must be in increments of 384

words (evenly divisible by 384):

3 blocks * 512 bytes/block + 4 bytes/word

384 words/cluster

The requirement to allow 500 directory entries requires

that the record length be at least 3002 words:

((500 entries * 6 words/entry) + 2 words/control)

3002 words/record

To allow 500 directory entries and to stay within a 3-block

cluster, the record length assignment of 3072 words was

selected:

3002 words/record 4 384 words/cluster

= 7.8 clusters/record

384 words/cluster * 8 clusters

= 3072 words/record

64

The 3072-word record length accommodates 511 directory

entries. Two words are used for the directory control

information (the next REC number available and the next

directory word available), leaving 4 words unused:

3072 words/record + 6 words/entry

= 512 six-word entries

512 six-word entries - 1 six-word entry

511 directory entries

1 six-word entry - 2 words for control

4 words unused

The control information portion of each card image

requires an average of 7 words (this includes one set of

correction set information words). The text portion of each

card image requires an average of 8 words (based on 32 bytes

of text + 4 bytes/word). Therefore, each card image

requires an average of 15 words. The 3072-word record

length accommodates approximately 200 card images:

3072 words/record + 15 words/card image

= 204.8 card images/record

The allowance of 200 card images is above the 150-card-

images-per-record requirement; however, many changes to the

contents of decks can be expected. The AFWAL/AAWA

65

environment involves "testing an idea" which requires many

correction sets (many ident directory entries). Each change

in the correction set, in turn, causes a 2-word correction-

set-information set to be generated for each card image

specified in the change. The 3072-word record reasonably

accommodates both the 500-directory-entries-per-record

requirement and the 150-card-images-per-record requirement.

Cyber Record Length Assignment

The smallest addressable unit of information on a disk

is a block, where a block must begin on a word boundary.

The requirement to allow 500 directory entries requires that

the record length be 3002 words:

((500 entries * 6 words/entry) + 2 words/control)

= 3002 words/record

where the "2 words/control" is reserved for the next EEC

number available and the next directory word available.

The control information portion of each card image

requires an average of 7 words (this includes one set of

correction set information words). The text portion of each

card image requires an average of 4 words (based on 40 bytes

of text + 10 bytes/word). Therefore, each card image

requires an average of 11 words. The 3002-word record

length accommodates approximately 275 card images:

66

3002 words/record * 11 words/card image

- 272.91 card images/record

The allowance of 275 card images is well above the 150-card-

images-per-record requirement. As previously stated, the

AFWAL/AAWA processing environment involves a lot of testing

of ideas, where changes are made to see the effects. The

3002-word record length assignment may cause a lot of wasted

space in each record (depending on the number of card images

in the record and the number of correction set information

words generated), but the assignment will accommodate the

directory-entry requirement.

This discussion shows that the record length assignment

is dependent upon the user's needs. Depending on the

processing environment, a trade-off may have to be made;

that is, allow for many correction sets in the directory and

waste disk space in the deck records or allow for fewer

correction sets and allow more efficient use of the disk

space.

67

MODIFY -UAer's Gu-ide

68

MODIFY User's Guide

Table of Contents

I. Introduction 70

II. Design 72

Library Structure 72

MODIFY Files 73

III. Operation 77

Library Creation 77
Library Modifications/Retrievals 77
Card Image Status 79
Run Modes 80
Overlapping Corrections. 80
Resequencing 81

IV. Execution 83

MODIFY Control Card 83
Parameters 84
List Options 86

V. Directives 88

Format 88
ADDFILE 90

COMECK 93
COMPILE 93
DECK I 94
DELETE 95

IDENT * * 98
INSERT 99
RESTORE 99

SEQUENCE 101

YANK101

VI. VAX/Cyber Job Control Examples103

69

MODIFY User's Guide

I. Introduction

MODIFY is a machine-independent software package

written in standard FORTRAN 77 and is capable of updating

and/or retrieving sets of data stored in one file called a

program library (PL). A program library contains "decks",

"comdecks", and "idents". A "deck" usually consists of a

source program, but may contain Job control language,

subprograms, data, etc. A "comdeck", or common deck,

contains common source code which may be inserted into

multiple decks or other comdecks. An "ident" identifies a

run correction set which includes directives and, optional-

ly, source-code records used in updating a deck or comdeck.

Writing a machine-independent software package cannot

be accomplished without some machine-dependent information.

Table C-I lists the required information which must be

provided before MODIFY is compiled, along with the values

assigned for the DEC VAX 11/780 and CDC Cyber 74/750

computer systems.

Chapter 11 provides a brief overview of MODIFY while

Chapter III a rovides more detailed description of how the

user may use MODIFY. Chapter IV outlines in detail the

required user-supplied MODIFY Control Card, and Chapter V

outlines the optional user-supplied directive cards.

Chapter VI provides examples of job control streams for both

the VAX and Cyber computer systems.

70

-- -

Table C-I

Machine-Dependent Information

Information Needed Value Supplied

VAX Cyber

Word Length (bytes per word) 4 10

Record Length (words per record) 3072 3002

File Name Length (maximum allowed) 9 7

Input File Default Name SYS$INPUT INPUT

Output File Default Name SYS$OUTPUT OUTPUT

Old PL File Default Name OLDPL OLDPL

New PL File Default Name NEWPL NEWPL

Compile File Default Name COMPILE COMPILE

Source File Default Name SOURCE SOURCE

Master Control Character 1 1

Input File Unit Number 5 5

Output File Unit Number 6 6

Old PL Unit Number 1 1

New PL Unit Number 2 2

Compile File Unit Number 3 3

Source File Unit Number 4 4

Alternate Input Unit Number 7 7

Alternate Output Unit Number 8 8

Scratch Input Unit Number 9 9

Scratch Output Unit Number 10 10

Scratch Comdeck Unit Number 11 11

71

This chapter provides an overview of the program

library structure and a description of the various files

accessible to the user.

Library Structure

The MODIFY program library is a direct-access organized

file containing unformatted I/O "records". One record is

used as the library's directory, in which at least one entry

is generated for each deck, comdeck, and ident introduced.

The remaining library records are used to store the contents

of each deck/comdeck introduced. If the contents of a deck

will not fit into one record, a continuation record will

automatically be used and an additional entry is generated

in the directory for each continuation record. An ident

correction set will cause "n" directory entries to be

generated, where "n" is the number of decks/comdecks updated

by the ident.

One or more records are used tostore "card images" for

each deck and comdeck introduced. "Card images" contain

control information and the text portion of each data-input

card identified within a deck or comdeck. When a library

record is full and more data-input cards still exist for a

given deck or comdeck, MODIFY will automatically start

another record and continue generating card images until the

deck/comdeck data-input cards have been processed.

72

As data-input cards are received and card images

generated, the control information portion of a card image

is assigned an unique "ldname.seqnbr" identifier. The

identifier assigned each card image will appear with each

data-input card (text portion of card image) in the output

listing and can be used to request changes to the text

portion of the designated card image (via MODIFY

directives). MODIFY also has a "historical" feature

allowing any set of changes made to the contents of decks or

comdecks to be revoked. The control information portion of

a card image keeps track of any ident names which changed

the status of the card image . By including the ident name

on the *YANK directive, the correction set is revoked.

MODIFY Files

This section provides a description of all the files

accessible to the user, whereas the first section only

described the program library file. MODIFY also interacts

with five scratch files, but they are not described here

because the interaction is transparent to the user.

MODIFY optionally interacts with six user-accessible

files. Figure C-i depicts this relationship. The dotted

lines indicate optional files, the use of which is deter-

mined by the type of run (creation or correction) and the

user-supplied MODIFY Control Card.

The default file names used for the VAX implementation

of MODIFY appear in Table C-i of this user's guide. The

73

yi

le (P)-1

MODIFY

/ S..

V/

Outpu New PI nCompile E~uce

_(N) I(C)(S

Figure C-i. MODIFY User-Accessible File Interaction

alphabetic character in parenthesis appearing in Figure C-i

indicates the MODIFY control card parameter which may be

used to change the default file name. With the exception of

a creation run, the old program library file is the latest

version of the new program library file generated from a

previous MODIFY run.

The characteristics of the MODIFY user-accessible files

are listed in Table C-II. The input file must contain the

MODIFY Control Card and may contain a combination of

directives, or directives and data-input cards. The

contents of the output file is determined by the type of run

74

Table C-II

MODIFY User-Accessible File Characteristics

Record
File Type Storage Length Function

Old PL Unformatted Direct, User- Contains old PL
Compressed Supplied

New PL Unformatted Direct, User- Contains new PL
Compressed Supplied

Input Formatted Sequential 80 Contains MODIFY
card and can con-
tain directives
and data records

Outpt Fomattd Seuental 1 requeaise iatheg
Outpu Formtted equeniale12uCo tn li tng

"L"~ control card
parameter

Compile Formatted Sequential 80 Contains execut-
able program
statements suit-
able for
compilation

Source Formatted Sequential 80 Contains "active"
card images

(default listing options for the creation or correction run)

or the options specified by the user on the MODIFY Control

Card. The compile file contains the text portion of all

non-directive, active card images. The *DECK and OCOMDECK

directives are ignored and *CALL directives are replaced

with the contents of the comdeck specified. The source file

contains the text portion of all active card images. This

75

includes the *DECK, *COMDECK and *CALL directives which

allows the user to specify the source file as input to a

MODIFY creation run. This provides a "clean" program

library (no correction set information, thereby saving

storage space) for the same computer system or allows for

easy transport of the program library to another computer

system.

.I

I

76i

III. Operation

This section presents an overview on how to use MODIFY

to create a program library and to maintain/retrieve source

code stored in a program library.

Library Creation

A one-time-only creation run must establish the program

library before any correction runs may be executed. A

creation run is implied when MODIFY does not encounter any

directives prior to encountering a *DECK or *COMDECK

directive.I The user must determine what material will be input and

precede each deck with the appropriate *DECK or *COMDECK

directive. Data-input cards up to the next *DECK or

*COMDECK directive comprise the deck. A common deck must be

placed prior to any of the decks calling it.

Each data-input card (including the *DECK or *COMDECK

directive) will be assigned an unique identifier in the form

of "dname.seqnbr". The "dname" will be the user-assigned

name found on the *DECK or *COMDECK directive, and the

"seqnbr" is a sequence number assigned by MODIFY, starting

with the value of 1 for each new deck introduced.

Library Modifiiations/Retrievals

Modifications to a program library may include changing

the contents of existing deck/comdecks and/or adding new

77-d MNIM=

decks/comdecks to the library. Once all updates are

complete, the user may want to simply "retrieve" the

contents of an existing deck.

Changes to the contents of existing decks/comdecks are

accomplished by a "correction set", a set of directives

indicating specific updates and optionally includes data

cards which are to be inserted at specified locations. The

name of the correction set is assigned by the user via the

*IDENT directive. Newly inserted cards will be assigned a

"dname.seqnbr" identifier, where "dname" is the ident name.

Sequence numbers will be assigned (starting with the value 1

for each ident introduced) as they are inserted into the

,1 program library, not necessarily in the order they appear in

the correction set. Multiple *IDENT directives may appear

in the input file.

Two methods are available to add new decks/comdecks to

an already existing program library. In both cases, the

"dname" portion of the "dname.seqnbr" identifier will be the

name specified on the *DECK or *COMDECK directive. The

easiest method is simply to precede each deck with the

appropriate *DECK or 'COMDECK directive and include this as

part of the input file. The decks will be added to the end

of the existing program library. Care must be taken, how-

ever, to insure that a *DECK or OCOMDECK directive is not

the first directive of a correction run. Recall that a

"creation" run is implied if the first directive encountered

is a *DECK or *COMDECK directive.

78

The second method of insertion can be used if (1) the

sole purpose of a correction run is to insert additional

decks, (2) the deck is to be inserted in the middle of the

existing program library, or (3) the deck to be inserted is

located on another file. Each deck must be preceded with

the appropriate *DECK or *COMDECK directive and the

difference is that an *ADDFILE directive must precede the

first *DECK or 'COMDECK directive being added. See the

"ADDFILE" description, Chapter V, for complete details.

If the purpose of a MODIFY run is simply to retrieve

the contents of an existing deck (i.e., no updates desired),

specify the "quick" run mode via the MODIFY control card and

specify the deck name(s) on a *COMPILE directive.

Card Image Status

As previously explained, the program library deck

records (not the directory record) contains multiple card

images. A card image is generated for each data-input

card in a deck and consists of control information and a

text portion. The status of each card image is either

"active" or "inactive". All newly generated and RESTOREd

card images are "active". Any card images DELETEd, EDITed,

FILLed, or YANKed are "inactive". A correction set

information designator is added to the control information

for a card each time the status of the card is changed. For

any one card image, the user may change the status a maximum

of twenty times. Only "active" card images are written to

79

the COMPILE and SOURCE files.

Run Modes

The mode parameter specified on the MODIFY Control Card

controls the order in which decks are written to the compile

file.

The "quick" mode ("Q" parameter specified) allows

*COMPILE directives to specify decks written to the compile

file in the order encountered on the library. If the "K"

parameter is also specified, the decks are in the order

specified on *COMPILE directives.

The "full" mode ("F" parameter specified) ignores

*COMPILE directives and updates all decks in the sequence

encountered on the library.

If neither "full" nor "quick" is specified, a "normal"

mode is implied. The "normal" mode writes to the compile

file all decks specified on *COMPILE directives plus decks

updated, in the order encountered on the library. If the

"K" parameter is specified, the decks are written in the

order specified on *COMPILE directives followed by the decks

updated.

Overlapping Corrections

An "overlapping correction" occurs when a card image is

specified on more than one update-type directive. This may

occur when a range of card images is specified on two

* •. directives and a card image falls in both ranges. When this

* 180

occurs, the directive selected first will be processed while

any succeeding directives (specifying a "dname.seqbr"

already processed) will be written to the output file along

with a message stating that the directive was not processed.

The order of the directives submitted by the user has

no bearing on the order in which directives are selected.

The order in which directives are selected is first

determined by the run mode which selects the processing

order of decks. The directives pertaining to a given deck

are evaluated and selected in ascending order by the

"seqnbr" of the first "dname.seqnbr" identifier on each

directive.

Reseauencine

After frequent modifications to a program library, it

may become necessary or desirable to "clean up" the library.

Two methods are available to accomplish this task.

The first method allows specified decks to be

resequenced, eliminating all "inactive" card images and

renumbering "active" card images starting with the value 1.

The drawback of this method is that the library directory is

not "cleaned up". That is, ident entries which only apply

to a resequenced deck are not removed.

The second method resequences the entire library. The

generation of a source file provides a complete set of all

"active" card images which may subsequently be specified as

* the input file to a MODIFY creation run.

81

Any time decks are resequenced by either method, the

history of all changes is lostb

This chapter has provided a general description of how

a user might use MODIFY. The next chapter provides a

detailed description of the MODIFY Control Card which must

be included in the MODIFY input file, and the succeeding

chapter provides a detailed description of the MODIFY

directives.

82

Once the MODIFY program is invoked, the first

data-input card on the system-designated input file (i.e.,

the card reader) must be the MODIFY Control Card. The

parameters specified on this card allow the user to (1)

change the default file name assigned to a user-accessible

file, (2) change the default value of the directive card

master control character, (3) specify an alternate input

file where the run directives/data cards are to be located,

(4) set the run mode, (5) indicate which of the output files

are to be generated for the run, and (6) indicate the

contents of the output listing file. This chapter provides

a detailed description of the MODIFY Control Card and the

various optional parameters which are available.

MODIFY Control Card

The MODIFY Control Card must be the first data-input

card on the sy3tem designated input file. The card must be

provided even though all the optional parameters are

omitted. The format of the MODIFY card is:

MODIFY,pl,p2,...,pn

where "pl,p2,...,pn" designates the optional parameters

discussed in the next section. The word "MODIFY" must

appear in columns 1 through 6, delimiting "MODIFY" and each

83

7WA e AL

parameter with a comma or at least one blank.

This section provides the correct format and a

description of each optional parameter which may appear on

the MODIFY Control Card.

OPtion gignificance

C - Compile file output

omitted or C The compile file will be
generated, the contents of which
is determined by the run mode
and by the directives submitted
during the run.

C=filename The compile file will be
generated and identified by the
named file.

C=O (zero) The compile file is not
generated.

F - Full update mode

F The full run mode is specified.
All known decks are written to
the compile file.

omitted F and Q omitted specifies the
normal run mode. The compile
file will contain only those
decks specified on *COMPILE
directives and/or those dtcks
updated during the run.

I- Input file

omitted or I The input file will be the
system-designated input file
(i.e., the card reader).

Imfilename The input file will be the named
file.

84

Option Significance

K - Compile card sequence

K The compile file will contain
those decks specified on
*COMPILE directives and/or those
decks updated, in the order
specified by *COMPILE directives
followed by decks updated.

omitted The compile file will contain
those decks specified on
*COMPILE directives and/or those

decks updated, in the order
encountered on the library.

L - List options

L=x Allows the user to specify the
contents of the output file.
The "x" may be any one, or any
combination, of the list options
described in the next section.

omitted If creation run, L=A12 is
automatically selected. If
correction run, L=A1234 is
automatically selected.

N - New program library output

N A new program library will be
generated.

omitted A new program library will not
be generated.

N=filename A new program library will be
generated and identified by the
named file.

0 - Output file

omitted or 0 The output file will be
generated on the system-
designated output file.

O=filename The output file will be
generated and identified by the
named file.

85

Ontion Si.nif icance

P - Old program library

omitted or P The old program library file is
expected to be on the default
unit designator and identified
by the default file name.

P=filename The old program library file is
expected to be in the named
file.

Q - Quick update mode

Q The quick run mode is specified.
Only decks specified on *COMPILE
directives will be written to
the compile file.

omitted Q and F omitted specifies the
normal run mode. The compile
file will contain only those
decks specified on *COMPILE
directives and/or those decks
updated during the run.

S -Source file

S A source file will be generated.

omitted A source file will not be
generated.

Szfilename A source file will be generated
on the named file.

* - Master control character

*=char The master control character
(first character of each
directive) for the run is
"char".

omitted The master control character for
the run is the default master
control character.

List Ovtions

* The list ("L") MODIFY Control Card parameter may be

used to alter the default list options (creation run is

86

.a- a.- L - -. - : L :

L=A12, correction run is L=A1234) controlling the contents

of the designated output file. The format of the list

parameter is

L=xxx

where "x" designates any of the following options.

0Dtion Sianificance

A Lists known decks/comdecks/ident names and

deck names written to COMPILE file

F All selections other than 0

0 Suppresses all MODIFY listings

1 Lists cards in error and the associated
error messages

2 Lists all active MODIFY directives
.encountered either on input or on the old

program library

3 Lists all cards that changed status during

MODIFY run

Lists all non-MODIFY directives encountered

in the input stream

7 Lists all active cards

8 Lists all inactive cards

9 Correction history of all cards listed as a

result of list options 7 and 8

B Three alphabetic lists by deck, comdeck,
and ident names

87'" U

V. ietv1

In order to create a program library or modify/retrieve

a deck or comdeck in an already existing program library, a

set of MODIFY directives must be submitted. The set may

consist of one or more directives and a variable number of

data-input cards to be inserted into the program library.

The MODIFY directives allow the user to (1) identify a

correction set which may delete lines of code, insert lines

of code, restore lines of code, search and replace lines of

code, search and print lines of code, and replace columns in

lines of code, (2) identify the beginning of a deck or a

common deck, (3) identify common code to be inserted into

the contents of a deck or common deck, (4) specify an

alternate input file where additional directives and

data-input cards may be found, (5) resequence line-of-code

identifiers within a deck or comdeck (6) revoke the changes

made in a previous run, and (7) retrieve the contents of

decks/comdecks suitable for compilation. This chapter

provides a detailed description of the fourteen MODIFY

directives.

EoQmLa

This section describes the general format of the MODIFY

directives. All directive cards contain three fields: an

identifier field, a name field, and a parameters field. The

identifier field contains the master control character

88

A-O-A115 553 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOO-ETC F/6 9/2
MODIFY: A MACHINE-INDEPENDENT MAINTENANCE PROGRAM. CUl
DEC 81 N J MURPHY

UMCLASSIFIEO ,AFIT/SCS/MA/810-5 NL

22 f f f f f f f f f f f f

Iimhhh7mHh~h

(normally an asterisk) in column 1. The name field starts

in column 2 and contains the long or short form of the

directive name. The name field must be separated from the

parameters field by a comma or by at least one blank. The

parameters field contains a variable number of parameters,

where a mixture of parameter formats is acceptable,

depending on the directive. The following list provides the

acceptable formats, a description of each format, and the

directives where each format is acceptable:

Format Descrition

dname The deck or comdeck name; 'ADDFILE
must be one to nine *CALL
characters in length 'COMDECK

*COMPILE
*DECK
*SEQUENCE

idname The correction set (ident) 'IDENT
name; must be one to nine *YANK
characters in length

filename The alternate input file 'ADDFILE
name; character length is
machine dependent

dname a.dnameb The deck named dname and 'COMPILE
all decks up to and In- *SEQUENCE
cluding dnameb, as they
appear in'the library
directory

idnamea .idnameb The ident named idnamea and 'YANK
all idents up to and in-
cluding idname , as they
appear in the library
directory

89

I

Format Dectition

lname.seqnbr The deck/comdeck/ident name *DELETE
and the sequence number *EDIT
within the deck/comdeck/ *FILL
ident; the line-of-code *INSERT
identifier *RESTORE

*SCAN

/string/ The string of characters *EDIT
to be searched/printed/ *FILL
replaced, delimited by any *SCAN
character (other than a
a comma or a blank) which
is not in the string;
string must be zero to
twenty characters in
length

column The column number where *FILL
replacement is to start;
must be greater than zero
and less than 81

The parameters within the parameters field must be separated

by a comma or at least one blank. The exact placement of

each format within a directive card's parameters field is

described in detail in the sections to follow.

ADDFILE

*ADDFILE,filename,dname
OAF

The 'ADDFILE directive designates an alternate file

where a 'DECK or 'COMDECK directive and text data may be

found (filename), and designates where to insert the

information after the specified deck (dname) on the new

program library. If "filename" is the primary input file,

all cards following the *ADDFILE will be added until a

1go

.1

directive other than a 'DECK, eCOMDECK, or *CALL directive

is encountered. If "filename" is omitted, the primary input

file (INPUT or the file specified on the MODIFY Control Card

"I=" parameter) is assumed. Only one alternate input file

may be specified for each run. That is, if the "I" para-

meter is used to designate an alternate input filename, the

ADDFILE "filename" parameter cannot specify a different file

(added decks must be included in the "I=filename" file). If

"filename" is omitted and a "dname" specified, two commas

must separate the directive name and the "dname" specified.

If the add-after deck name "dname" is omitted, the decks

will be added to the end of the library. Only one *ADDFILE

directive may appear in any one MODIFY run.

Examples:

1) An 'ADDFILE is included in file INPUT, decks to be
added are immediately following the 'ADDFILE, and the
information is to be added to the end of the library.

'ADDFILE,INPUT
'ADDFILE

2) An *ADDFILE is included in file INPUT, decks to be
added are in file NEWFILE, and the information to be
added is to be inserted after deck name DK12..

'ADDFILE,NEWFILE,DK12

3) An 'ADDFILE is included in the input file NEWFILE
(i.e., I=NEWFILE), decks to be added are immediately
following the 'ADDFILE, and the information to be added
is to be inserted after deck name DK12.

'ADDFILENEWFILEDK12
'ADDFILE,,DK12

91

*CALL,dname

*CA

The *CALL directive designates a comdeck "dname", the

contents of which is written to file COMPILE (excluding the

'COMDECK card) ii. place of the *CALL directive. Common

decks may call other common decks. However, a common deck

must not call itself or call decks that contain calls to the

common deck. A *CALL is the only directive which may appear

within the contents of a deck or comdeck. It is treated as

a data card of the deck in which it appears.

Example:

A program library contains one deck, DK1, consisting of
a FORTRAN 77 program and two comdecks, COMI and COM2,
consisting of FORTRAN 77 COMMON statements:

'DECK,DK1 'COMDECK,COMI
PROGRAM PROGI COMMON/INT/I1,M

'CALL,COM1 COMMON/REAL/X,Y,Z
'CALL,COM2

COMMON/DATA/COUNT,LENGTH
M=1 'COMDECK,CO2

COMMON/CHAR/NAME

END

The contents of DK1, as it would appear in file COMPILE,
follows:

PROGRAM PROGi
COMMON/INT/II,M
COMMON/REAL/X,Y,Z
COMMON/CHAR/NAME
COMMON/DATA/COUNT,LENGTH
M=1

END

92

*COMDECK,dname
*CD

The 'COMDECK directive designates the name of a new

common deck "dname" and denotes its beginning. The contents

of a common deck is written to file COMPILE only as a result

of a *CALL directive encountered in a deck or another

comdeck. The "dname" must differ from any deck or comdeck

names already in the library directory. The data cards

following the 'COMDECK are considered part of the common

deck until a directive other than a 'CALL is encountered.

No more than 999,999 data cards may be introduced by one

'COMDECK. A common deck must be introduced before the decks

or comdecks calling it are introduced.

'COUPILE,dnamel,dname2 ,dname3 , ... ,dnamen

'COMPILE,dnamea dnameb0C

The 'COMPILE directive designates the name of the deck

"dname" to be written to file COMPILE. The first form

requests that one or more decks be written to file COMPILE.

The second form requests that the deck "dname " and alla

decks up to and including "dname " be written to file

COMPILE, as they appear on the library directory. The two

93

6b

types of formats may appear on the same *COMPILE. Any deck

introduced or any deck updated during the run will

automatically be written to file COMPILE. If vdname" is a

new deck name, the *DECK directive introducing "dname" and

its contents must precede the *COMPILE. The order of the

decks written to file COMPILE depends on the run mode (full,

quick, or normal) and the "K" parameter specified on the

MODIFY Control Card. No more than 300 deck names may be

specified (directly and/or indirectly) on one MODIFY run.

Examples:

The program library directory currently contains seven
decks: DK1, DK2, DK3, DK4, DK5, DK6, and DK7.

1) Write the contents of DK3 and DK4 to file COMPILE.

'COMPILE,DK3,DK4
*COMPILE,DK4,DK3

OCOMPILE,DK3.DK4

2) Write the contents of all the decks except DK4 to file
COMPILE.

*COMPILE,DK1,DK2,DK3,DK5,DK6,DK7

'COMPILE,DKI,DK2,DK3

'COMPILE,DK5,DK6,DK7

'COMPILE,DK1,DK3,DK5.DK7

eCOMPILE,DK1.DK3,DK5,DK6,DK7

'DECK,dname
'DK

The 'DECK directive designates the name of a new deck

"dname" and denotes its beginning. The "dname" must differ

*1 94

from any of the deck or comdeck names already in the library

directory. The data cards following the *DECK are

considered part of the deck until a directive other than a

'CALL is encountered. No more than 999,999 data cards may

be introduced by one *DECK.

DELETE

'DELETE,miname.seqnbr
*D

*DELETE,lname.seqnbr , lname.seqnbr b
*D

The *DELETE directive designates the card, or a range

of cards, to be deactivated. Any data cards following the

'DELETE will be inserted following the deactivated card(s)

on the NEWPL and OUTPUT files and will replace the deacti-

vated card(s) on the COMPILE and SOURCE files. The inser-

tion process will continue until a directive other than a

*CALL is encountered. The first form requests that one

card, one line of code, be deactivated. The second form

requests that the card "lname.seqnbra" and all cards up to

and including "lname.seqnbr b" be deactivated. The range may

include cards previously deactivated. The *DELETE does not

actually delete cards but flags them as inactive. The cards

retain the same "lname.seqnbr" identifier and may be

referred to in the same way on a succeeding run. The

"lname" may be a deck name, a common deck name, or an ident

name The ffseqnbrw may not exceed 999,999. Each card's

95

"lname.seqnbr" identifier will be printed with its text on

the output listing file.

Examples:

A partial listing of the deck DKI follows, where a

previous correction set IDENTI made changes as indicated by
the line designator:

*DECK,DK1 DK1 1
PROGRAM PROGI DKI 2
INTEGER TABLE(8,1000) IDENTI 10
M=l DK1 3
READ *,(TABLE(J,M),J=1,8) DK1 4

I IF (TABLE(1,M).GE.O) THEN DK1 5
M=M+1 IDENT1 11
READ *,(TABLE(J,M),J=1,8) DK1 7
GO TO 1 DK1 8

ENDIF IDENTI 12

1) Delete the priming READ statement.

ODELETE,DK1.4

2) Delete all lines associated with the IF statement.

'DELETE,DK1.5,IDENT1.12

E EDIT,/string
1 /,/string 2 /,lname.seqnbr

RED

*EDIT,/string 1/,/string 2 /,lname.seqnbr ,lname.seqnbrb
*ED

The *EDIT directive designates that a string of

characters "string1 " be replaced by a string of characters

"string 2 " on the card "lname.seqnbr", or on the range of

cards from "iname.seqnbra" to "lname.seqnbrb". If "string1

is not found, no replacement takes place. The strings,

96

"string" and "string2 ", may contain zero to twenty

characters and must be delimited by a character (other than

a comma or a blank) which is not in the string. The

delimiter used for "string1 " may be different from the

delimiter used for "string 2'. Each card in the specified

range which contains "string1 " is deactivated and a new card

containing "string2 " in place of "string," is created. if

the strings are of different lengths, the characters on the

created card are moved appropriately. A warning message

will be issued if the moving of characters causes the text

to exceed 72 characters.

Examples:

1) Replace the characters "CONTINE" with "CONTINUE" in

line 10 of the deck DK1.

'EDIT,/CONTINE/,$CONTINUE$,DK1.10

2) Replace the characters "FI" with "IF" in all 50 lines
of code in the deck DKI.

'EDIT,/FI /,/IF /,DK1.1,DK1.50

FILL

*FILL,column,/string/,lname.seqnbr
*FI

'FILL,column,/st,'ing/,lname.seqnbr , lname,seqnbr b
*FI

The *FILL directive designates that a string of

characters "string" be placed in the card "lname.seqnbr", or

in the range of cards "lname.seqnbr " to "lname.seqnbrb",

* .97

starting in the column number "column". "String" may

contain zero to twenty characters and must be delimited by a

character (other than a comma or a blank) which is not in

the string. Each card in the specified range is deactivated

and a new card containing "string" starting in "column" is

created. A warning message will be issued if the replace-

ment of "string" causes the text to exceed 72 characters.

Examples:

1) Place a "C" in column 1 of the DK lines 10 through 15
so that the lines will be treated as comments.

*FILL,1,IC/,DK1.10,DK1.15

2) Remove the "C" from column 1 of the DK1 lines 10
through 15 so that the lines will again be executed.

*FILL,1,/ /,DK1.10,DK1.15

IDENT

*IDENT,idname
*ID

The *IDENT directive designates the name of a

correction set "idname" and denotes its beginning. The

"idname" must differ from any of the ident names already in

the library directory. The "idname" name remains in effect

until another *IDENT is encountered. Any card inserted by

"idname" will be given an identifier in the form of

"idname.seqnbr". Sequencing of new cards starts with one

for each ident. Any card introduced by an *IDENT may be

98

changed up to a maximum of 19 times by succeeding 'IDENT

directives. Any card introduced by a *DECK or *COMDECK may

be changed up to a maximum of 20 times by succeeding 'IDENT

directives.

*INSERT,iname.seqnbr
*I

The *INSERT directive designates the card

"lname.seqnbr" after which the data cards following the

*INSERT will be inserted. The insertion process will

continue until a directive other than a *CALL is

encountered. The cards inserted will be given an identifier

in the form of "idname.seqnbr", where "idname" is the name

on the *IDENT introducing the correction set.

*RESTORE,lname.seqnbr
OR

*RESTORE,lname.seqnbr a ,lname.seqnbrb
*R

The *RESTORE directive designates the card, or a range

of cards, to be reactivated. Any data cards following the

*RESTORE will be inserted into COMPILE and NEWPL, following

the reactivated card(s). The insertion process will

continue until a directive other than a *CALL is

99

encountered. The first form requests that one card be

reactivated. The second form requests that the card

"iname.seqnbr a and all cards up to and including

,,Iname.seqnbrb" be reactivated. The range may include cards

already active.

'SCAN,/string1 /,/string 2 / ,lname.seqnbr
*SC

*SCAN,/string1 /,/string 2/ ,iname.seqnbr , name.seqnbrb
*SC

The *SCAN directive designates tnat a string of

characters "string 1 " be replaced temporarily by a string of

characters "string 2 on the card "iname.seqnbr", or on the

range of cards from "lname.seqnbr " to "lname.seqnbr b.

The strings "string," and "string 2 " may contain zero to

twenty characters and must be delimited by a character

(other than a comma or a blank) which is not in the string.

The delimiter used for "string," may be different from the

delimiter used for "string 2 ". Each card in the specified

range which contains "string is not permanently changed.

The text is used to create a temporary card containing

"string 2 " in place of "string 1 " and the temporary card is

written to the output listing file. The *SCAN does not

permanently deactivate nor create cards. The purpose of

this directive is to verify the effects of the string

replacements before the changes are actually made with the

'EDIT directive.

100

*SEQUENCE,dnamel,dname2 , ... ,dname
'S n

*SEQUENCE,dname .dname
S a b

The *SEQUENCE directive designates the deck or comdeck

"dname" to be resequenced. The first form requests that one

or more decks be resequenced. The second form requests that

the deck or comdeck "dname a" and all decks and comdecks up

to and including "dname b" be resequenced. All active cards

in "dname" are resequenced with the identifier

"dname.seqnbr". All history-type control information is

deleted from active cards and all inactive cards are purged,

thereby "cleaning up" the contents of the library record(s).

The *SEQUENCE does not remove ident names from the

directory, even though all "idname.seqnbr" designators have

been purged.

OYANK,idnamel,idname2 , ... ,idnamemy n

*YANK,idname .idnamebOY a

The *YANK directive designates the name of the

correction set "idname" and causes the effects of the

correction set to be reversed. That is, any card introduced

101

- -'

by the ident "idname" is deactivated and any card

deactivated by "idname" is reactivated. The first form

requests that one or more idents be yanked. The second form

requests that the ident "idname a" and all idents up to and

including "idnameb " be yanked, as they appear on the library

directory. The two types of formats may appear on the same

*YANK.

102

VI. VAX/Cvber Job Control Examoles

This chapter provides four examples of job control

streams which could be used to invoke MODIFY on the Avionics

Laboratory's VAX computer system and the Aeronautical System

Division's Cyber computer system. The first two examples

illustrate the job control language used for DEC VAX 11/780

creation and correction runs. The last two examples

illustrate the job control language used for CDC Cyber

74/750 creation and correction runs.

VAX Creation Run

$ JOB MURPHY
$ PASSWORD xxxxxx
$ RUN MODIFY
MODIFY,N

(Creation directives and source code cards)

$ EOJ

VAX Correction Run

$ JOB MURPHY
$ PASSWORD xxxxxx
$ RUN MODIFY
MODIFY,N

(Update directives and optional source code
cards)

$ EOJ

103

Cyber Creation Run

NJM,T20. T820077,MURPHY, 55533.
REQUEST, NEWPL , PF.
ATTACH, MODIFY, MODIFYBINARY.
MODIFY.
CATALOG, NEWPL, PROGRAMLIBRARY.
7/8/9
MODIFY, N

(Creation directives and source code cards)

6/7/8/9

Cvber Correction Run

NJM ,T20. T8200077,MURPHY, 55533.
REQUEST, NEWPL , PF.
ATTACH ,MODIFY, MODIFYBINARY.
ATTACH, OLDPL ,PROGRAMLIBRARY.
MODIFY.
CATALOG, NEWPL, PROGRAMLIBRARY.
7/8/9
MODIFY,N

(Update directives and optional source code
cards)

6/7/8/9

1014

MODIFY Functional Charts

105

!

MODIFY Functional Charts

This appendix provides an overview, first-level, and

second-level Structured Analysis and Design Technique (SADT)

functional charts. The SADT charts do not show housekeeping

functions, and they must show at least three and no more

than six functional areas on each chart.

106

E-4

0

0 o

0

/ -

u*
0 40

z Q

100

Oz

Z I .

kS

'-4 o1

S.S - -3-. X .3 -3

~~E- W.
a.Cd od u~C W

zO0 U

C/)2

L.
4c :z A.)

z W C4)

0 ow
oz F5Of 4.

W E-0
0 N (i C

-. a rTA b w 0
H -, -7 9 .) =

V) W -444

0 " II Daw E-4C-) -4 -
44 (-Cl) L .4 0
z CLO0 Cz lz 9 C0

R -#S..

I-.H

-3 E

-3 z

cd E-4

0-LH

-. .'---108

Cl')

0 W)

rz)1- a.- "0Cz.

E-4

U3U

00

W E-4 x. Z -4

-3 0

z 0 0

'U co E4 E-
E-4')IIE4-

0- E- CZCICZ C

C4,

p.q

CI')

~.0
ok I=

" E-4 Q

109

L) .- -/ -3 CI - /) w E

~~~~rZ)~ 44z 0 C4 rz 4
0z w~ 01-4 r

-).)r.. 0') E- IC Cr) Q~ a) Q

W 20

0')3 Cr2
1-4 E. -4

zz
E-4 Wr z

0 %3

__ 2-4

Cr2ad

04 rd 1

E- lm rA
u. 0..0

w mw :I

I4140

Cl4C

b-Ia

z IQ

" a..

U
4-0).

110



CCz
1-40 V2 D j

zEE4 a14 w Ow 04

>-4
0

0x 0

E- 3c E-4

z
3 0C

V2~zJ 0W

CIAZ w C
0

z rk.

rz..

000

l-WE-

e 4 0 E4 -

0 111 9



0

08-
C/Cz

E- 0

H L)

.
.D 

- -Ica)

CL..

0

4-)

CTCU

S..

b42 z 44

0~

0p
090

0

02

11



Descriati-on of MODIFY's Subroutinea

1 13



ADrendix E

Description of MODIFY's Subroutines

The MODIFY program consists of a main program and 54

subroutines. This appendix provides a brief description of

each one of the 54 subroutines. The list of subroutines is

in alphabetical order by the subroutine name used in the

MODIFY program. Standard FORTRAN 77 requires that

subroutine names be less than or equal to six characters in

length; therefore, a more descriptive title is given at the

beginning of each definition.

BLDCOM - BUILD COMPILE is used when a deck is to be
retrieved (no updates) and written to file
COMPILE. Each active card image is written to
the compile and scratch output files.

BLDCON - BUILD CONTROL INFORMATION retrieves card image
words and places the contents of the words in
the appropriate variable names/arrays.

BLDNEW - BUILD NEWNAM ARRAY merges the contents of
"ADDFIL" and "OLDNAM" arrays.

BLDSOU - BUILD SOURCE FILE takes all comdeck records
followed by deck records and writes active card
images to the source file.

CHGNAM - CHANGE NAME retrieves the file name or list
options specified as the value of a parameter on
the MODIFY control card and updates the FILES or
LIST array.

CHKYAN - CHECK YANK scans each card images's correction-
set-information words and reverses the effects
of the ident name specified on *YANK
directive(s).

COMPAC - COMPACT takes a record and determines the number
of spaces preceding the text, the number of text
characters, and returns the text characters left
Justified.

114



EXPAND - EXPAND takes the directive abbreviation found
and returns the full directive name.

FIND - FIND is used to locate a given name in a given
array. If found, the array entry is returned.

FINNEW - FINISH NEWPL writes any decks not already
processed to the new program library.

GENCRD - GENERATE CARD IMAGE controls the building of the
NEWREC array (a new program library record) by
placing n-words in the array for each card image
and starting a continuation record if necessary.

GENDIR - GENERATE DIRECTORY builds and writes the new
program library directory using information from
the old directory and the NEWNAM, NEWCON, and
OLDCON arrays.

GENSOU - GENERATE SOURCE FILE controls the building of
the source file by selecting all active card
images in comdecks followed by all active card
images in decks.

GET - GET is used to retrieve text characters which
have been stored in a integer record on the
unformatted, direct-access program library.

GETDEC - GET DECK selects the next NEWNAM deck/comdeck
entry to process, based on the run mode (full,
quick or normal).

GETLST - GET LIST sets the entries in the logical array
LIST according to the values found after the "L"
parameter on the MODIFY Control Card.

GETNAM - GET NAME scans a string of characters and
returns the name found.

GETOLD - GET OLD DIRECTORY brings in the OLDPL directory
and builds the arrays OLDNAM and OLDCON.

INIT - INITIALIZE sets the input/output file units,
sets the file names with the user-supplied
default file names, and writes the header to the
output file.

INSERT - INSERT takes text characters and places them in
the specified n-integer words.

INSNEW - INSERT NEW controls the generation of new data
cards to be placed in specified deck/comdeck.

115



. -.-~- ~-- C - * ...... . . - .. .

NEWENT - NEW ENTRY takes new deck/comdeck/ident names and
places appropriate information in the NEWREC
array.

NFIND - NUMERIC FIND takes the integer variable
specified and determines if the value is in the
specified array. If found, returns the array
entry.

NMODE - NORMAL MODE selects the next deck to be
processed with precedence being given to those
decks referenced on *COMPILE directives followed
by those decks which are to be updated.

OLDENT - OLD ENTRY is used in generating a new PL
directory using the appropriate information in
NEWREC to build the new directory.

OPNFIL - OPEN FILES opens the appropriate files as
specified by the array FILES.

PRIME - PRIME performs a priming read on the input
transaction file and determines if the run is to
be creation or correction.

PRINT - PRINT controls all lines written to the output
file by assigning carriage control, writing the
header on top of each form, and insuring no more
than MAXLIN lines are printed per form.

PRODAT - PROCESS DATA CARD increments the appropriate
counter and writes the data card to either the
scratch input file or the scratch comdeck file.

PRODEL - PROCESS DELETE DIRECTIVE deactivates active card
images and writes the text to the output file.

PRODIR - PROCESS DIRECTIVE validates input directives and
places them in the appropriate array.

PROEDI - PROCESS EDIT DIRECTIVE scans the text for the
given substring, deactivates the card image, and
builds a new card image with the substituted
substring.

PROFIL - PROCESS FILL DIRECTIVE places the substring on
the text where specified, deactivates the old
card image, and builds a new card image with
substituted substring.

PROMOD - PROCESS MODIFY CONTROL CARD scans for the MODIFY
parameters and sets the array MODE
appropriately.

116



PRONEW - PROCESS NEW locates the new deck/comdeck in the
scratch input file and controls the writing of
COMPILEr NEWPL, scratch output, and OUTPUT
files.

PRORES - PROCESS RESTORE DIRECTIVE reactivates inactive
card images and writes the text to the output
file.

PROSCA - PROCESS SCAN DIRECTIVE scans the record for the
substring, builds a new image with substituted
substring, and writes the new image to the
output file (no updating).

QMODE - QUICK MODE selects the next deck to be processed
with precedence being given to those decks
referenced on *COMPILE directives.

SEQDK - SEQUENCE DECK takes each active card image in
the deck/comdeck and sequentially renumbers the
card images, controls the writing of COMPILE,
NEWPL, scratch output, and OUTPUT files.

SETCNT - SET COUNTER is part of processing the input
transaction file. If a *CALL directive or a
data-input card is realized, a counter is
incremented to indicate another data card in the
deck. Other directives cause the logical array
TYPE to be set to false, indicating a new
counter will be started.

SETCON - SET CONTROL INFORMATION is used to process the
MODIFY Control Card and opens appropriate files.

SETPRO - SET PROCESSING INFORMATION is used to read and
process the input transaction file (directives
and data-input cards).

SETUP - SETUP prepares the selected deck/comdeck for
processing by building arrays DECUPD and YANK,
and setting variables DNAME and DKINFO.

UPDATE - UPDATE looks at each card image in the selected
deck/comdeck, performs any changes requested by
update directives, and controls the writing of
the COMPILE, NEWPL, scratch output, and OUTPUT
files.

UPDPL - UPDATE PROGRAM LIBRARY controls the creating/
retrieving/updating of the program library.

VALAF - VALIDATE ADDFILE DIRECTIVE insures proper
syntax, validates parameters, and updates ADDAFT
and FILES.

117



VALCA - VALIDATE CALL DIRECTIVE insures that the comdeck
name exists and increments the appropriate
counter.

VALCDI - VALIDATE COMDECK/DECK/IDENT DIRECTIVES insures
the name does not already exist, sets TYPE
array, and increments a counter if directive is
a *DECK or *COMDECK.

VALCSY - VALIDATE COMPILE/SEQUENCE/YANK DIRECTIVES
insures name(s) exist and places the name(s) in
appropriate arrays (either COMPIL, RESEQ, or
YANK).

VALREM - VALIDATE REMAINING DIRECTIVES (DELETE, INSERT,
RESTORE, EDIT, SCAN, and FILL) insures the
DNAME.SEQ exists, places the directive in the
UPDDIR array, and writes the directive and any
data cards which follow to the scratch input
file.

WRAPUP - WRAP UP writes the scratch output listing to the
output file, generates list option "B", and
informs the user of directory utilization.

WRICOM - WRITE COMPILE FILE expands any *CALL directives
and writes all records to file COMPILE.

WRICRD - WRITE CARD IMAGE controls the writing of all
card images, checking the status of the card
image and which files are to be generated.

WRINEW - WRITE NEWPL determines the REC number of the
record to be written and writes the NEWREC array
to the NEWPL file.

V

118



Nancy Joan (Keller) Murphy was born on 20 July 1948 in

Piqua, Ohio. She graduated from Newton Township Local High

School, Pleasant Hill, Ohio, in 1966. After working four

years in Columbus, Ohio, she enlisted in the USAF and was

eventually assigned to Charleston AFB, South Carolina, as an

Air Operations Specialist. In September 1974, she attended

Wright State University, Dayton, Ohio, under the Airman

Education and Commissioning Program and received her

Bachelor of Science Degree in Quantitative Business

Analysis. Upon completion of Officers Training School in

March 1977, she was assigned to Headquarters, Air Force

Logistics Command, Wright-Patterson AFB, Ohio. In June

1980, she entered the School of Engineering, Air Force

Institute of Technology to pursue her Masters Degree.

Permanent address: 1115 Wayne Street

Troy, Ohio 45373

119



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wen Dteeentered),

READ INSTRUCTIONSREPORT DOCUMAENTATION PAGE BEFORE COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT*S CATALOG NUMBER

AFIT/GCS /MA/81D-5
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVEREO

MODI"fY: A MACHINE-INDEPENDENT MS THESIS
MAI ENANCE PROGRAM S. PERFORMING o1G. REPORT NUMBER

7. AUTHOR(s) S. CONTRACT OR GRANT NUMOER(s)

NANCY J. RPHY
Captain USAF

9. PERFORMING ORGANIZATION NAME ANO AOORESS SO. PROGRAM ELEMENT. PROJECT. TASK
AREA a WORIC UNIT NUNGERS

Air Force Institute of Technology 
(AFIT/EN)

Wright-Patterson AFB, Ohio 45433

11. CONTROLLING OFFICE NAME ANO ADORESS 12. REPORT OATE

Avionics Laboratory, Electronic December 1981

Warfare Division (AFWAL/AAWA) ,1. NUMBEROF PAGES
Wright-Patterson AFB, Ohio 45433 119

14. MONITORING AGENCY NAME & ADDRESS(i( differeft tron Contolllng Office) IS. SECURITY CLASS. (at this report)

Unclassified

IS. OECLASSIFICATIONOOWNGRAOING
SC14ECULE

16. DISTRISUTION STATEMENT (olt his Report)

Approved for public release; distribution unlimited

1?. OISTRIBUTION STATEMENT (of the abstract entered In Block 20. it dllferent boo Report)

1. 5 APR .
It. SUPPLEMENTARY NOTES

Approved for blic rele a 'AW AFPR 190-17 Dean for Research and
Professional Development

_ E~E~IC C.,t4. Jk1I, U$A Air Force Institute of Technology (ATC)
Diricf-t of Fuolc Afa.rs Wriot-Patterson AFB, OH 45433

It. KIEY WOROS (Conlnue an revtee side iI necesary aid identify by block nsmber)
Software Maintenance Configuration Management Control
ADP Utility
Library Maintenance
Batch Utility
Batch Editor

20. ABSTRACT (Contlnue an reveree side It neceeary and Identify by block nmmbee)

MODIFY is a machine-independent batch utility d-rion.d to assist
orogramers in maintaininqk source files. MODIFY is written in
standard FORTRAN 77. MODIFY handles routine update/retrieval
functions and provides a complete audit trail of changes.

DO I ,2 In 1473 criTioN oF i Nov 6s is OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAG4 (" n Does 8nrdewl


